depth wise cnn相对于传统的CNN,区别在于:它是逐通道做卷积操作

例子如下:

(1)使用传统卷积,输入:H*W*C_in,最终输出h*w*C_out:卷积核尺寸为K*K*C_in*C_out,则参数量=K*K*C_in*C_out,计算量=K*K*h*w*C_in*C_out;

(2)使用depth wise cnn(一般还要加上1*1卷积),输入:H*W*C_in,最终输出h*w*C_out:首先是depth wise cnn,卷积核尺寸为K*K*C_in,该层的参数量=K*K*C_in,计算量=h*w*K*K*C_in,经过它的输出为h*w*C_in;然后是1*1卷积层,卷积核尺寸为1*1*C_in*C_out,该层参数量=1*1*C_in*C_out,计算量=h*w*C_in*C_out;综上,总的参数量=K*K*C_in + C_in*C_out,总的计算量=K*K*h*w*C_in + h*w*C_in*C_out。

然后我们来做比较:

参数量:(K*K + C_out) * C_in < K*K*C_out*C_in,即depth wise cnn具有更小的参数量;

计算量:(K*K + C_out)*h*w*C_in < K*K*C_out*h*w*C_in,即depth wise cnn具有更小的计算量;

综上,depth wise cnn相比较于传统cnn,参数量和计算量都更小,且模型表达能力在检测领域可以达到传统cnn一样的水平,所以广泛用于移动端或者对实时性要求较高的场景中;

depth wise CNN的更多相关文章

  1. CNN结构演变总结(二)轻量化模型

    CNN结构演变总结(一)经典模型 导言: 上一篇介绍了经典模型中的结构演变,介绍了设计原理,作用,效果等.在本文,将对轻量化模型进行总结分析. 轻量化模型主要围绕减少计算量,减少参数,降低实际运行时间 ...

  2. [Localization] MobileNet with SSD

    先来一波各版本性能展览: Pre-trained Models Choose the right MobileNet model to fit your latency and size budget ...

  3. 卷积神经网络学习笔记——轻量化网络MobileNet系列(V1,V2,V3)

    完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和Mo ...

  4. MobileNet系列之MobileNet_v2

    ​ MobileNet系列之MobileNet_v1 Inception系列之Inception_v1 Inception系列之Batch Normalization Inception系列之Ince ...

  5. Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate()

    感觉numpy.hstack()和numpy.column_stack()函数略有相似,numpy.vstack()与numpy.row_stack()函数也是挺像的. stackoverflow上也 ...

  6. 『高性能模型』卷积复杂度以及Inception系列

    转载自知乎:卷积神经网络的复杂度分析 之前的Inception学习博客: 『TensorFlow』读书笔记_Inception_V3_上 『TensorFlow』读书笔记_Inception_V3_下 ...

  7. 小白眼中的AI之~Numpy基础

      周末码一文,明天见矩阵- 其实Numpy之类的单讲特别没意思,但不稍微说下后面说实际应用又不行,所以大家就练练手吧 代码裤子: https://github.com/lotapp/BaseCode ...

  8. QANet

    Reading Comprehension(RC) 阅读理解对于机器来说, 是一项非常艰巨的任务.google提出QANet, 目前(2018 0505)一直是SQuAD的No. 1. 今天简单地与大 ...

  9. 5、用Numpy实现结构体

    1.结构数组: 在C语言中我们可以通过struct关键字定义结构类型,结构中的字段占据连续的内存空间,每个结构体占用的内存大小都相同,因此可以很容易地定义结构数组.和C语言一样,在NumPy中也很容易 ...

随机推荐

  1. 关于sql注入盲注,谈谈自己的心得

    1.没做防御的站点,拿上sqlmap直接怼就行了. 2.做了防御,有的用函数过滤了,有的用了waf(比如安全狗,云锁,华为云waf,360waf,知道创宇盾,护卫神等等) 这些就相当麻烦了,首先要探测 ...

  2. MacOS安装Docker

    傻瓜式安装: 1. 浏览器或命令行下载:https://download.docker.com/mac/stable/Docker.dmg 2. 点击安装文件,拖动图标到应用 3. 确认安装正常:do ...

  3. python dijkstra 最短路算法示意代码

    def dijkstra(graph, from_node, to_node): q, seen = [(0, from_node, [])], set() while q: cost, node, ...

  4. c++练手项目:英语单词拼写测试程序

    代码比较简单.基本的思路是从文本文件中按行读取数据,数据结构为“hello-你好”.前面是英语,后面是中文,中间用“-”连接.程序通过查找连词符的位置来分割中文和英文.再通过和用户输入的单词进行比较判 ...

  5. python的pandas库读取csv

    首先建立test.csv原始数据,内容如下 时间,地点 一月,北京 二月,上海 三月,广东 四月,深圳 五月,河南 六月,郑州 七月,新密 八月,大连 九月,盘锦 十月,沈阳 十一月,武汉 十二月,南 ...

  6. springboot的第一节课

    快速开始spring boot应用 官方向导搭建boot应用 地址:http://start.spring.io/ 设置项目属性: 3.解压,拷贝到工作空间,导入maven项目 4.写Controll ...

  7. createTextRange 创建文本对象

    document.body.createTextRange 主要是用来对一些文本对象进行操作.比如你有一大段文字,都在同一个P标签内,但是你只希望通过JS改变其中的一小部分,这时就可以用createT ...

  8. 三.Python变量,常量,注释

    1. 运行python代码. 在d盘下创建一个t1.py文件内容是: print('hello world') 打开windows命令行输入cmd,确定后 写入代码python d:t1.py 您已经 ...

  9. Subarray Sum II

    Description Given an positive integer array A and an interval. Return the number of subarrays whose ...

  10. Oracle 分区默认segment大小变化(64k—>8M)

    原文链接:http://www.cnblogs.com/wcwen1990/p/6656545.html _partition_large_extents和_index_partition_large ...