/*
埃拉托色尼算法 
问题描述:定义一个正整数n,求0-n范围以内的所有质数 
@date 2017-03-06
@author Johnny Zen   
*/ 
#include<iostream>
#include<math.h>
using namespace std;
 
void Eratosthenes(int arrs[],int n){   //arrs暂时设置为空指针,意为在返回目标数组(n范围内的所有质数数组) 
  int sqr,j;
  for(int i=2;i<n;i++){
    arrs[i] = i;     //目标数组初始化 
    sqr = sqrt(i);   //sqr 向下取整   注意:变量名sqr不能取名为sqrt,否则发生关键字冲突,无法编译! 
    for(int k = 2;k<=sqr;k++){   //因为: 在sqrt(i)以后的含小于sqrt(i)倍数关系的数据都已经被清除,剩下的均为质数 
      if(arrs[k]!=0){
        j = pow(k,2);
        while(j<=n){
          arrs[j] = 0;   //因数置0
          j = j+k;       //最为巧妙处: 加法   k*k   k*(k+1)    k*(k+2)  ----k*(k+n) 
        }
      }
    }
  }
  //输出
  for(int i = 2;i<n;i++)
    if(arrs[i]!=0)
      cout<<arrs[i]<<'\t'; 
 
int main(){
  int n,*arrs;
  cout<<"请输入数N:";
  cin>>n;
  arrs = new int[n];  //创建数组 
  
  Eratosthenes(arrs,n);
  
  delete [] arrs; 
  return 0;

[C++]埃拉托色尼算法的更多相关文章

  1. NOI-OJ 1.12 ID:10 素数对

    整体思路 本题涉及大量素数的使用,故使用埃拉拖色尼算法提前计算出素数表可以避免大量.重复的计算. 判断素数对很简单,使用两个变量p1和p2代表素数表中的第一个和第二个素数,依次在表中向后移动,判断p2 ...

  2. 常见素数筛选方法原理和Python实现

    1. 普通筛选(常用于求解单个素数问题) 自然数中,除了1和它本身以外不再有其他因数. import math def func_get_prime(n): func = lambda x: not ...

  3. 算法笔记_012:埃拉托色尼筛选法(Java)

    1 问题描述 Compute the Greatest Common Divisor of Two Integers using Sieve of Eratosthenes. 翻译:使用埃拉托色尼筛选 ...

  4. 埃拉托色尼筛法(Sieve of Eratosthenes)求素数。

    埃拉托色尼筛法(Sieve of Eratosthenes)是一种用来求所有小于N的素数的方法.从建立一个整数2~N的表着手,寻找i? 的整数,编程实现此算法,并讨论运算时间. 由于是通过删除来实现, ...

  5. 算法题解之math类题

    Bulb Switcher 灯泡开关 思路:除了平方数以外,其他所有位置的灯泡最终都被开关了偶数次,因此最终都为0.问题等价于求1~n中平方数的个数. public class Solution { ...

  6. 程序语言的奥妙:算法解读 ——读书笔记

    算法(Algorithm) 是利用计算机解决问题的处理步骤. 算法是古老的智慧.如<孙子兵法>,是打胜仗的算法. 算法是古老智慧的结晶,是程序的范本. 学习算法才能编写出高质量的程序. 懂 ...

  7. php取两个整数的最大公约数算法大全

    php计算两个整数的最大公约数常用算法 <?php//计时,返回秒function microtime_float (){ list( $usec , $sec ) = explode ( &q ...

  8. 【模板】埃拉托色尼筛法 && 欧拉筛法 && 积性函数

    埃拉托色尼筛法 朴素算法 1 vis[1]=1; 2 for (int i=2;i<=n;i++) 3 if (!vis[i]) 4 { 5 pri[++tot]=i; 6 for (int j ...

  9. B树——算法导论(25)

    B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的, ...

随机推荐

  1. list1与list2求交集的方法总结!

    一.有序集合求交集的方法有 a)二重for循环法,时间复杂度O(n*n) b)拉链法,时间复杂度O(n) c)水平分桶,多线程并行 d)bitmap,大大提高运算并行度,时间复杂度O(n) e)跳表, ...

  2. python之tkinter使用-复选框操作

    # tkinter复选框操作 import tkinter as tk root = tk.Tk() root.title('问卷调查') root.geometry('220x80') # 设置窗口 ...

  3. selenium之封装登陆操作

    # selenium 封装登录操作举例 import os, time # from selenium import webdriver class LoginPage(): '''登录模块''' d ...

  4. AWS、Azure和Google的云容器注册表有什么区别?

    亚马逊云计算服务(AWS).谷歌云服务和微软Azure,这三大公共云平台都提供Docker容器注册表.虽然他们的产品看起来很相似,但开发人员在做出选择之前,应该先了解价格和功能方面的差异. 公共云供应 ...

  5. 【AGC005F】Many Easy Problems (NTT)

    Description ​ 给你一棵\(~n~\)个点的树和一个整数\(~k~\).设为\(~S~\)为树上某些点的集合,定义\(~f(S)~\)为最小的包含\(~S~\)的联通子图的大小.\(~n~ ...

  6. Watchdogs利用Redis实施大规模挖矿,常见数据库蠕虫如何破?

    背景 2月20日17时许,阿里云安全监测到一起大规模挖矿事件,判断为Watchdogs蠕虫导致,并在第一时间进行了应急处置. 该蠕虫短时间内即造成大量Linux主机沦陷,一方面是利用Redis未授权访 ...

  7. 利用Python攻破12306的最后一道防线

    各位同学大家好,我是强子,好久没跟大家带来最新的技术文章了,最近有好几个同学问我12306自动抢票能否实现,我就趁这两天有时间用Python做了个12306自动抢票的项目,在这里我来带着大家一起来看看 ...

  8. android 让真机显示 DeBug Log调试信息

    真机默认是不开启Log 开关的,这么来说我们如果使用真机来搞程序测试的话,需要做以下几个步骤: 下面以华为手机为例开启手机的log功能:  1.在拨号界面输入:*#*#2846579#*#*  进入测 ...

  9. 【BZOJ2228】[ZJOI2011]礼物(单调栈)

    [BZOJ2228][ZJOI2011]礼物(单调栈) 题面 BZOJ 洛谷 题解 如果这个玩意不是一个三维立方体,而是一个二维的矩形,让你在里面找一个最大正方形,那么全世界都会做. 丢到三维上?似乎 ...

  10. Shell基础知识(五)

    shell中同样有数组的概念,获取数组中的元素要使用下标[],并且下标的值必须大于等于0.数据的各项特性见下例: #!/bin/bash array1=(1 2 3 999) echo ${array ...