题目链接

做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来。。。。。

想深入了解下数位DP的请点这里

先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数

有 

数位dp的题一般都会用到前缀数组,题目要求我们求b-a这个区间里各个数码出现的次数,我们可以分别求出(0,b)和(0,a-1)然后相减即可

具体分析请看代码,写的还算详细

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll dp[][][];
ll ans[];//用来储存每个数码出现的次数
ll bin[];//表示i位数中数码i出现的次数
ll d[];//这个用来存储数的每一位
void rule(){
bin[]=;
for(int i=;i<;i++) bin[i]=bin[i-]*;
for(int i=;i<;i++) dp[][i][i]=;
for(int i=;i<=;i++){
for(int j=;j<=;j++){
for(int z=;z<=;z++){
for(int k=;k<=;k++)
dp[i][j][z]+=dp[i-][k][z];//比如i=2,j=2时,所求数字范围应该是200-299,这一步把0-99中各数码出现次数加进去
dp[i][z][z]+=bin[i-];//这一位这是把200-299总共出现了100次的2给加进去
}
}
}
}
void solve(ll x,int flag){
ll tmpx=x;//存储传进来的x
int cnt=;//记录x的位数
memset(d,,sizeof(d));
while(x){
d[++cnt]=x%;
x/=;
}
for(int i=;i<cnt;i++){//这一步是最高位为0的,这些数都不会受到x的上限限制,都可以直接加进来
for(int j=;j<=;j++){
for(int k=;k<=;k++)
ans[k]+=dp[i][j][k]*flag;
}
}
int tmpt=cnt;
while(cnt){//可以举个456的例子来仔细分析一下
for(int i=;i<d[cnt];i++){//注意这里是小于不是等于,保证上限不被取到,在后面再被处理
if(!i&&cnt==tmpt) continue;//这种情况在最高位为0时已经统计过了,不能重复
for(int j=;j<=;j++){
ans[j]+=dp[cnt][i][j]*flag;//不是上限的时候都直接加
}
}
ans[d[cnt]]+=(tmpx%bin[cnt]+)*flag;cnt--;//随着while循环,上限一步步的被处理
}//简述一下过程(456),就是第一个for处理了0-399,然后把首位4的57次加上,第二个for,处理的0-49......就这样一步步往下
}
int main(){
ll a,b;scanf("%lld%lld",&a,&b);
rule();
solve(b,);solve(a-,-);//1和-1是符号位,分别是加和减
for(int i=;i<;i++)
printf("%lld%c",ans[i],i==?'\n':' ');
return ;
}

BZOJ 1833 数字计数 数位DP的更多相关文章

  1. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  2. 1833: [ZJOI2010]count 数字计数——数位dp

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...

  3. 【BZOJ-1833】count数字计数 数位DP

    1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2494  Solved: 1101[Submit][ ...

  4. [BZOJ 1833] 数字计数

    Link: BZOJ 1833 传送门 Solution: 比较明显的数位DP 先预处理出1~9和包括前导0的0的个数:$pre[i]=pre[i-1]*10+10^{digit-1}$ (可以分为首 ...

  5. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  6. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

  7. 【题解】P2602 数字计数 - 数位dp

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数 \(a\) 和 \(b\) ,求在 \([a,b]\) 中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中 ...

  8. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

  9. Luogu P2602 [ZJOI2010]数字计数 数位DP

    很久以前就...但是一直咕咕咕 思路:数位$DP$ 提交:1次 题解:见代码 #include<cstdio> #include<iostream> #include<c ...

随机推荐

  1. P2057 [SHOI2007]善意的投票

    思路 简单的最小割模型 最小割的模型就是选出一些边,把点集划分成S和T两个部分,使得代价最小 到这题上就是板子了 代码 #include <cstdio> #include <alg ...

  2. UVA11270 Tiling Dominoes(轮廓线动态规划)

    轮廓线动态规划是一种基于状态压缩解决和连通性相关的问题的动态规划方法 这道题是轮廓线动态规划的模板 讲解可以看lrj的蓝书 代码 #include <cstdio> #include &l ...

  3. 论文笔记之:Semi-supervised Classification with Graph Convolutional Networks

    Semi-supervised Classification with Graph Convolutional Networks 2018-01-16  22:33:36 1. 文章主要思想: 2. ...

  4. sublime 代码段

    demo 展示助手中有经常用到个标签. <textarea type="text/md_x" style="display:none"> ## de ...

  5. Spring boot Value注入 未整理 待完善

    Springboot 热部署Springboot为开发者提供了一个名叫 spring-boot-devtools来使Springboot应用支持热部署,提供开发者的开发效率,无需手动重启Spring ...

  6. 性能测试 Performance Test Report

    时间隔了很久,两年左右了吧,最近打开原来的测试报告,测试数据还是很漂亮的.TPS比我记忆中的要高很多. 数据中有些是定死了的(当时的要求),并发不是计算的,是用几个值跑起来试试看的.因为后期我们会用S ...

  7. [原][unreal][UE][spark]分析unreal engine 虚幻引擎的粒子编辑器:Cascade

    参考:https://www.raywenderlich.com/270-unreal-engine-4-particle-systems-tutorial (使用了一个飞机射击游戏的粒子来展示,全英 ...

  8. hive表的存储路径查找以及表的大小

    1.在hive中知道一个表的存储路径可以通过hive命令   desc formatted table_name 显示表的详细信息; 2.然后找到该表的存储路径 "Location:    ...

  9. ES6的新API如Promise,Proxy,Array.form(),Object.assign()等,Babel不能转码, 使用babel-polyfill来解决

    Babel默认只转换新的JavaScript句法(syntax),而不转换新的API,比如Iterator.Generator.Set.Maps.Proxy.Reflect.Symbol.Promis ...

  10. Transactional cannot be resolved to a type

    SpringBoot整合Mybatis时遇到“ Transactional cannot be resolved to a type ” ,以为是没有导入相应的包 “ import org.sprin ...