题目链接

做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来。。。。。

想深入了解下数位DP的请点这里

先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数

有 

数位dp的题一般都会用到前缀数组,题目要求我们求b-a这个区间里各个数码出现的次数,我们可以分别求出(0,b)和(0,a-1)然后相减即可

具体分析请看代码,写的还算详细

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll dp[][][];
ll ans[];//用来储存每个数码出现的次数
ll bin[];//表示i位数中数码i出现的次数
ll d[];//这个用来存储数的每一位
void rule(){
bin[]=;
for(int i=;i<;i++) bin[i]=bin[i-]*;
for(int i=;i<;i++) dp[][i][i]=;
for(int i=;i<=;i++){
for(int j=;j<=;j++){
for(int z=;z<=;z++){
for(int k=;k<=;k++)
dp[i][j][z]+=dp[i-][k][z];//比如i=2,j=2时,所求数字范围应该是200-299,这一步把0-99中各数码出现次数加进去
dp[i][z][z]+=bin[i-];//这一位这是把200-299总共出现了100次的2给加进去
}
}
}
}
void solve(ll x,int flag){
ll tmpx=x;//存储传进来的x
int cnt=;//记录x的位数
memset(d,,sizeof(d));
while(x){
d[++cnt]=x%;
x/=;
}
for(int i=;i<cnt;i++){//这一步是最高位为0的,这些数都不会受到x的上限限制,都可以直接加进来
for(int j=;j<=;j++){
for(int k=;k<=;k++)
ans[k]+=dp[i][j][k]*flag;
}
}
int tmpt=cnt;
while(cnt){//可以举个456的例子来仔细分析一下
for(int i=;i<d[cnt];i++){//注意这里是小于不是等于,保证上限不被取到,在后面再被处理
if(!i&&cnt==tmpt) continue;//这种情况在最高位为0时已经统计过了,不能重复
for(int j=;j<=;j++){
ans[j]+=dp[cnt][i][j]*flag;//不是上限的时候都直接加
}
}
ans[d[cnt]]+=(tmpx%bin[cnt]+)*flag;cnt--;//随着while循环,上限一步步的被处理
}//简述一下过程(456),就是第一个for处理了0-399,然后把首位4的57次加上,第二个for,处理的0-49......就这样一步步往下
}
int main(){
ll a,b;scanf("%lld%lld",&a,&b);
rule();
solve(b,);solve(a-,-);//1和-1是符号位,分别是加和减
for(int i=;i<;i++)
printf("%lld%c",ans[i],i==?'\n':' ');
return ;
}

BZOJ 1833 数字计数 数位DP的更多相关文章

  1. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  2. 1833: [ZJOI2010]count 数字计数——数位dp

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...

  3. 【BZOJ-1833】count数字计数 数位DP

    1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2494  Solved: 1101[Submit][ ...

  4. [BZOJ 1833] 数字计数

    Link: BZOJ 1833 传送门 Solution: 比较明显的数位DP 先预处理出1~9和包括前导0的0的个数:$pre[i]=pre[i-1]*10+10^{digit-1}$ (可以分为首 ...

  5. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  6. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

  7. 【题解】P2602 数字计数 - 数位dp

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数 \(a\) 和 \(b\) ,求在 \([a,b]\) 中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中 ...

  8. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

  9. Luogu P2602 [ZJOI2010]数字计数 数位DP

    很久以前就...但是一直咕咕咕 思路:数位$DP$ 提交:1次 题解:见代码 #include<cstdio> #include<iostream> #include<c ...

随机推荐

  1. 一个查表置换的CM

    说实话,今天被自己蠢哭了 因为看多了一个字符,以为是输入字符变形后的base64编码,也怪自己没大致看过base64汇编形式,把base64跟完了用py实现完算法才意思到是base64,这是题外话 本 ...

  2. BZOJ2306: [Ctsc2011]幸福路径

    Description 有向图 G有n个顶点 1, 2, -, n,点i 的权值为 w(i).现在有一只蚂蚁,从 给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条 边,它 ...

  3. UVA 11019 Matrix Matcher(哈希)

    题意 给定一个 \(n\times m\) 的矩阵,在给定一个 \(x\times y\) 的小矩阵,求小矩阵在大矩阵中出现的次数. \(1 \leq n,m \leq 1000\) \(1\leq ...

  4. SQLite EF Core Database Provider

    原文链接 This database provider allows Entity Framework Core to be used with SQLite. The provider is mai ...

  5. 3、Python编程之MySQLdb模块(0602)

    解释器环境与选项 python解释器启动 python [options] [ -c cmd | filename | - ] [ args ] python解释器环境变量 python代码的测试.调 ...

  6. HDU 5791 Two(LCS求公共子序列个数)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=5791 题意: 给出两个序列,求这两个序列的公共子序列的总个数. 思路: 和LCS差不多,dp[i][ ...

  7. 【Python】【jupyter-notebook】

    1. win7 安装:https://www.cnblogs.com/zlslch/p/6984403.html 1.Jupyter Notebook 和 pip   为了更加方便地写 Python ...

  8. sublime text3 license

    —– BEGIN LICENSE —– Michael Barnes Single User License EA7E-821385 8A353C41 872A0D5C DF9B2950 AFF6F6 ...

  9. Virtualbox-CentOS网络配置

    1.记下虚拟网卡IP 2. 配置网卡1.网卡2 网卡1 ---对应---eth0----NAT(网络地址转换)用来与外网通信 网卡2 ---对应---eth1----Host-only用来与主机通信 ...

  10. 学习笔记1—python基础

    1.安装pip: python -m pip install -U pip (打开命令行窗口:Anaconda Prompt) 升级:python -m pip install --upgrade p ...