倍增法模板题

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
#define maxn 1000
#define DEG 20
struct Edge{
int to,next;
}edge[maxn*maxn*];
int head[maxn],tot;
void addedge(int u,int v){
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
}
int fa[maxn][DEG];
int deg[maxn];
void bfs(int root){
queue<int> que;
deg[root]=;
fa[root][]=root;
que.push(root);
while(!que.empty()){
int tmp=que.front();
que.pop();
for(int i=;i<DEG;i++)
fa[tmp][i]=fa[fa[tmp][i-]][i-];
for(int i=head[tmp];i!=-;i=edge[i].next){
int v=edge[i].to;
if(v==fa[tmp][]) continue;
deg[v]=deg[tmp]+;
fa[v][]=tmp;
que.push(v);
}
}
}
int lca(int u,int v){
if(deg[u]>deg[v]) swap(u,v);
int hu=deg[u],hv=deg[v],tu=u,tv=v;
for(int det=hv-hu,i=;det;det>>=,i++)
if(det&) tv=fa[tv][i];//将uv提到同一深度
if(tu==tv) return tu;
for(int i=DEG-;i>=;i--){
if(fa[tu][i]==fa[tv][i]) continue;
tu=fa[tu][i];
tv=fa[tv][i];
}
return fa[tu][];
}
int ans[maxn],flag[maxn];
void init(){
tot=;
memset(ans,,sizeof ans);
memset(head,-,sizeof head);
memset(flag,,sizeof flag);
}
int main(){
int n,u,v,m,q;
while(scanf("%d",&n)==){
init();
for(int i=;i<=n;i++){
scanf("%d:(%d)",&u,&m);
while(m--){
scanf("%d",&v);
addedge(u,v);
addedge(v,u);
flag[v]=true;
}
}
int root;
for(int i=;i<=n;i++) if(!flag[i]){root=i;break;}
bfs(root); scanf("%d",&q);
char c;
while(q--){
cin>>c;
scanf("%d %d)",&u,&v);
ans[lca(u,v)]++;
}
for(int i=;i<=n;i++)
if(ans[i]) printf("%d:%d\n",i,ans[i]);
}
return ;
}

poj1470 LCA倍增法的更多相关文章

  1. LCA(最近公共祖先)——LCA倍增法

    一.前人种树 博客:最近公共祖先 LCA 倍增法 博客:浅谈倍增法求LCA 二.沙场练兵 题目:POJ 1330 Nearest Common Ancestors 代码: const int MAXN ...

  2. POJ - 1330 Nearest Common Ancestors(dfs+ST在线算法|LCA倍增法)

    1.输入树中的节点数N,输入树中的N-1条边.最后输入2个点,输出它们的最近公共祖先. 2.裸的最近公共祖先. 3. dfs+ST在线算法: /* LCA(POJ 1330) 在线算法 DFS+ST ...

  3. hdu2586 lca倍增法

    倍增法加了边的权值,bfs的时候顺便把每个点深度求出来即可 #include<iostream> #include<cstring> #include<cstdio> ...

  4. 最近公共祖先 LCA 倍增法

    [简介] 解决LCA问题的倍增法是一种基于倍增思想的在线算法. [原理] 原理和同样是使用倍增思想的RMQ-ST 算法类似,比较简单,想清楚后很容易实现. 对于每个节点u , ancestors[u] ...

  5. luogu3379 【模板】最近公共祖先(LCA) 倍增法

    题目大意:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 整体步骤:1.使两个点深度相同:2.使两个点相同. 这两个步骤都可用倍增法进行优化.定义每个节点的Elder[i]为该节点的2^k( ...

  6. LCA—倍增法求解

    LCA(Least Common Ancestors) 即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. 常见解法一般有三种 这里讲解一种在线算法-倍增 首先我们定义fa[u][j ...

  7. LCA - 倍增法去求第几个节点

    You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...

  8. POJ 1330(LCA/倍增法模板)

    链接:http://poj.org/problem?id=1330 题意:q次询问求两个点u,v的LCA 思路:LCA模板题,首先找一下树的根,然后dfs预处理求LCA(u,v) AC代码: #inc ...

  9. 【模板】Lca倍增法

    Codevs 1036 商务旅行 #include<cstdio> #include<cmath> #include<algorithm> using namesp ...

随机推荐

  1. es7预览

    哈哈,es6才刚刚掌握,就给大家介绍es7了. es7的草案其实早已经定下来了,而且更加向着java这些高级语言看齐了 chrome的高版本其实也已经对es7的部分功能实现了!! 1.数组 inclu ...

  2. 函数和常用模块【day05】:迭代器(六)

    本节内容 1.简书 2.可迭代对象 3.迭代器 4.rang方法 5.总结 一.简述 我们经常使用for循环去遍历一些序列数据,但是我们有的时间发现for循环的效率很低,而且很占用了大量的硬件资源,但 ...

  3. python---redis在windows安装以及测试

    手册以及下载地址http://www.runoob.com/redis/redis-install.html,以及启动和测试 启动服务端(进入项目目录下: redis-server.exe redis ...

  4. loadrunner controller如何执行测试

    使用Virtual User Generator编写需要测试的脚本   打开controller,在左侧的available scripts里选择需要测试的脚本添加(Add)到scripts in s ...

  5. vue.js初始学习笔记&vue-cli

    笔记一下: vue.js 安装,参考: http://www.cnblogs.com/wisewrong/p/6255817.html (vue-cli) http://www.cnblogs.com ...

  6. MyBatis参数传递

    一.单个参数: public List<XXBean> getXXBeanList(String xxCode); <select id="getXXXBeanList&q ...

  7. cocos2d-x 2.1.4 项目配置过程

    http://cocos2d-x.org 下载cocos2d-x 2.1.4 使用project-creator.py脚本创建Cocos2d-win32 Application项目 1.先下载Wind ...

  8. 第18月第22天 机器学习first

    1.网易公开课 机器学习   http://open.163.com/special/opencourse/machinelearning.html https://github.com/search ...

  9. html5移动端页面分辨率设置及相应字体大小设置的靠谱使用方式

    对于html5移动端网页编写CSS网上有很多介绍的文章,但在实际使用过程中还是会纠结. 网上的资料太多,且大多都是技术介绍型,特别是针对android上,网上写的各种麻烦,各种复杂,各种不接地气儿.. ...

  10. geeksforgeeks-Array-Rotation and deletion

      As usual Babul is again back with his problem and now with numbers. He thought of an array of numb ...