题目链接

  这题好喵啊……

  设f[i]是最少用i次才能全关上转移到最少用i-1次才能全关上灯的期望值,那么n个灯里有i个是正确的,剩下的都是不正确的

  因此期望是$f[i]=frac{n}{i}+frac{(n-i)*f[i+1]}{i}$

  然后我们把初始状态最少用多少次才能关掉求出来

  DP一遍,最后统计答案。

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<cstdlib>
#include<vector>
#define maxn 100020
#define mod 100003
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} vector<long long>s[maxn]; long long inv[maxn];
long long q[maxn];
long long f[maxn]; int main(){
long long n=read(),m=read();
inv[]=;
for(long long i=;i<=n;++i) inv[i]=(-mod/i*inv[mod%i]%mod+mod)%mod;
for(long long i=;i<=n;++i) q[i]=read();
for(long long i=;i<=n;++i)
for(long long j=i;j<=n;j+=i) s[j].push_back(i);
long long last=;
for(long long i=n;i>=;--i){
if(q[i]==) continue;
for(long long j=;j<s[i].size();++j) q[s[i][j]]^=;
last++;
}
f[n]=;
for(long long i=n-;i>m;--i) f[i]=(n*inv[i]%mod+((n-i)*f[i+]%mod)*inv[i]%mod)%mod;
for(long long i=;i<=m;++i) f[i]=;
long long ans=;
for(long long i=;i<=last;++i) ans=(ans+f[i])%mod;
for(long long i=;i<=n;++i) ans=(ans*i)%mod;
printf("%d\n",ans);
return ;
}

【Luogu】P3750分手是祝愿(期望DP)的更多相关文章

  1. P3750 [六省联考2017]分手是祝愿 期望DP

    \(\color{#0066ff}{ 题目描述 }\) Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 \(n\) 个灯和 ...

  2. bzoj 4872: [Shoi2017]分手是祝愿 [期望DP]

    4872: [Shoi2017]分手是祝愿 题意:n个灯开关游戏,按i后i的约数都改变状态.随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略.问期望步数\(\cdot n! \mod ...

  3. [BZOJ4872][六省联考2017]分手是祝愿(期望DP)

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Statu ...

  4. 【BZOJ】4872: [Shoi2017]分手是祝愿 期望DP

    [题意]给定n盏灯的01状态,操作第 i 盏灯会将所有编号为 i 的约数的灯取反.每次随机操作一盏灯直至当前状态能够在k步内全灭为止(然后直接灭),求期望步数.n,k<=10^5. [算法]期望 ...

  5. 【BZOJ4872】【SHOI2017】分手是祝愿 期望DP

    题目大意 有\(n\)盏灯和\(n\)个开关,初始时有的灯是亮的,有的灯是暗的.按下第\(i\)个开关会使第\(j\)盏灯的状态被改变,其中\(j|i\).每次你会随机操作一个开关,直到可以通过不多于 ...

  6. [六省联考2017]分手是祝愿 期望DP

    表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...

  7. 【bzoj4872】[Shoi2017]分手是祝愿 期望dp

    Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...

  8. BZOJ 4827 [Shoi2017]分手是祝愿 ——期望DP

    显然,考虑当前状态最少需要几步,直接贪心即可. 显然我们只需要考虑消掉这几个就好了. 然后发现,关系式找出来很简单,是$f(i) f(i+1) f(i-1)$之间的. 但是计算的时候并不好算. 所以把 ...

  9. [六省联考2017]分手是祝愿——期望DP

    原题戳这里 首先可以确定的是最优策略一定是从大到小开始,遇到亮的就关掉,因此我们可以\(O(nlogn)\)的预处理出初始局面需要的最小操作次数\(tot\). 然后容(hen)易(nan)发现即使加 ...

  10. luogu P3830 [SHOI2012]随机树 期望 dp

    LINK:随机树 非常经典的期望dp. 考虑第一问:设f[i]表示前i个叶子节点的期望平均深度. 因为期望具有线性性 所以可以由每个叶子节点的期望平均深度得到总体的. \(f[i]=(f[i-1]\c ...

随机推荐

  1. 索引属性 unique指定

    比较重要的属性有: 名字 db.collection.ensureIndex({},{name:''}) 在创建索引时,mongodb会自己给索引创建默认的名字,这种名字并不好记,我们看一下mongo ...

  2. 阿里云服务器下安装LAMP环境(CentOS Linux 6.3) 安装与配置 php

    下面我们一起为服务器安装 PHP,在使用 yum 安装软件包的时候,yum 会去默认的资源库里查看我们要安装的软件包,然后到指定的服务器上下载并安装. 但是有的时候,我们要安装的软件包并没有包含在默认 ...

  3. ubuntu安装R时候增加软件源到sources.list,sudo apt-get update不能更新

    http://forum.ubuntu.org.cn/viewtopic.php?t=401717 ubuntu安装R时候增加软件源到sources.list,sudo apt-get update不 ...

  4. java基础必备单词讲解 day one

    computer 电脑 computer path 路径 配置jdk环境 class 类 classpath 类路径 编译好的文件执行路径 public 公共的 private 私有的 static ...

  5. facebook的infer检测工具的安装

    缘由 由于公司产出代码的时候会使用静态扫描工具检测代码的质量,所以自己就想动手尝试一番infer整个的使用方式和使用效果,便动手安装了infer,结果安装过程中遇见太多的坑,导致很多时候都安装失败,这 ...

  6. node的webserver模板

    const express = require('express'); const swig =require('swig'); const fs = require('fs'); //创建服务器 c ...

  7. Java 数值计算精度问题

    最近刚好做到涉及金额方面的项目,不像普通in,double,floatt类型来修饰,而是用BigDecimal来修饰,就去收集下了这方面的资料,整理如下: 1.float和double只能用来做科学计 ...

  8. node 发送邮件demo (QQ邮箱)

    nodemailer是nodejs中的邮件发送模块,本文使用的版本为2.5.0 --下载模块 npm install nodemailer npm下载模块后,在项目中引入就可以使用: var node ...

  9. Vue-Router基础学习笔记

    1.安装vue-router npm install vue-router yarn add vue-router 2.引入注册vue-router import Vue from 'vue' imp ...

  10. DRF工程搭建

    环境安装与配置 DRF需要以下依赖: Python (2.7, 3.2, 3.3, 3.4, 3.5, 3.6) Django (1.10, 1.11, 2.0) DRF是以Django扩展应用的方式 ...