Batch Normalization

Batch归一化

觉得有用的话,欢迎一起讨论相互学习~Follow Me

3.4正则化网络的激活函数

  • Batch归一化会使你的参数搜索问题变得很容易,使神经网络对超参数的选择更加稳定.超参数的范围会更庞大,工作效果也更好.也会使你更容易的训练甚至是深层网络.
  • 对于logistic回归来说

正则化原理

\[u=\frac{1}{m}\sum x^{i}(求出平均值u)\]\[x=x-u\] \[\sigma^{2}=\frac{1}{m}\sum(x^{i})^{2}(求出方差)\]\[x=\frac{x}{\sigma^{2}}\]

函数曲线会由类似于椭圆变成更圆的东西,更加易于算法优化.

  • 深层神经网络

  • 我们将每一层神经网络计算得到的z值(在计算激活函数之前的值)进行归一化处理,即将\(Z^{[L]}的值进行归一化处理,进而影响下一层W^{[L+1]}和b^{[L+1]}\)的计算.

  • 此时z的每个分量都含有平均值0和方差1,但我们不想让隐藏单元总是含有平均值0和方差1,例如在应用sigmoid函数时,我们不想使其绘制的函数图像如图所示,我们想要变换方差或者是不同的平均值.

第L层神经元正则化公式

\[u=\frac{1}{m}\sum_{i}Z^{i}\]\[\sigma^{2}=\frac{1}{m}\sum_{i}(Z^{i}-u)^{2}\]\[Z^{i}_{norm}=\frac{Z^{i}-u}{\sqrt{\sigma^2+\epsilon}}\]\[\check{Z^{i}}=\gamma Z^{i}_{norm}+\beta \]

3.5 将Batch Normalization拟合进神经网络

对于Batch Normalization算法而言,计算出一层的\(Z^{[l]}\)之后,进行Batch Normalization操作,次过程将有\(\beta^{[l]},\gamma^{[l]}\)这两个参数控制.这一步操作会给你一个新的规范化的\(z^{[l]}\)值.然后将其输入到激活函数中,得到\(a^{[l]}\)

实质上,BN算法是在每一层的\(Z^{[l]}\)和\(a^{[l]}\)之间进行的运算

3.6 Batch Normalization为什么奏效

原因一

  • 无论数据的范围是0~1之间还是1~1000之间,通过归一化,所有的输入特征X,都可以获得类似范围的值,可加速学习.

原因二

  • 如果神经元的数据分布改变,我们也许需要重新训练数据以拟合新的数据分布.这会带来一种数据的不稳定的效果.(covariate shift)
  • Batch Normalization做的是它减少了这些隐藏值分布变化的数量.因为随着训练的迭代过程,神经元的值会时常发生变化.batch归一化可以确保,无论其怎样变化,其均值和方差将保持不变.(由每一层的BN函数的参数\(\beta^{[l]},\gamma^{[l]}\)决定其方差和均值)
  • Batch Normalization减少了输入值改变的问题,它的确使这些值变的稳定,即是原先的层改变了,也会使后面的层适应改变的程度减小.也可以视为它减少了前层参数和后层参数之间的联系.

原因三

  • Batch Normalization有轻微的正则化作用.
  • BN算法是通过mini-batch计算得出,而不是使用整个数据集,所以会引入部分的噪音,即会在纵轴上有些许波动.
  • 缩放的过程从\(Z^{[l]}\rightarrow\check{Z^{[l]}}\)也会引入一些噪音.
  • 所以和Dropout算法一样,它往每个隐藏层的激活值上增加了噪音,dropout有噪音的模式,它使一个隐藏的单元以一定的概率乘以0,以一定得概率乘以1.BN算法的噪音主要体现在标准偏差的缩放和减去均值带来的额外噪音.这使得后面层的神经单元不会过分依赖任何一个隐藏单元.有轻微的正则化作用.如果你想获得更好的正则化效果,可以在使用Batch-Normalization的同时使用Dropout算法.

3.7测试时的Batch Normalization

  • Batch-Normalization将你的数据以mini-batch的形式逐一处理,但在测试时,你可能需要对每一个样本逐一处理.我们应该怎么做呢~

Batch-Normalization公式

  • 注意 对于u和\(\sigma\)是在整个mini-batch上进行计算,但是在测试时,你不会使用一个mini-batch中的所有数据(因为测试时,我们仅仅需要少量数据来验证神经网络训练的正确性即可.)况且如果我们只使用一个数据,那一个样本的均值和方差没有意义,因此我们需要用其他的方式来得到u和\(\sigma\)这两个参数.
  • 运用覆盖所有mini-batch的指数加权平均数来估算u和\(\sigma\)

利用指数加权平均来估算\(u和\sigma\)对数据进行测试

对于第L层神经元层,标记mini-batch为\(x^{[1]},x^{[2]},x^{[3]},x^{[4]}...x^{[n]}\)在训练这个隐藏层的第一个mini-batch得到\(u^{[1][l]}\),训练第二个mini-batch得到\(u^{[2][l]}\),训练第三个mini-batch得到\(u^{[3][l]}\)...训练第n个mini-batch得到\(u^{[n][l]}\).然后利用指数加权平均法估算\(u\)的值,同理,以这种方式利用指数加权平均的方法估算\(\sigma^{2}\).

总结

在训练时,u和\(\sigma^{2}\)在整个mini-batch上计算出来的,但是在测试时,我们需要单一估算样本,方法是根据你的训练集估算u和\(\sigma^{2}\).常见的方法有利用指数加权平均进行估算.

[DeeplearningAI笔记]Batch NormalizationBN算法Batch归一化_02_3.4-3.7的更多相关文章

  1. Batch Normalization原理及其TensorFlow实现——为了减少深度神经网络中的internal covariate shift,论文中提出了Batch Normalization算法,首先是对”每一层“的输入做一个Batch Normalization 变换

    批标准化(Bactch Normalization,BN)是为了克服神经网络加深导致难以训练而诞生的,随着神经网络深度加深,训练起来就会越来越困难,收敛速度回很慢,常常会导致梯度弥散问题(Vanish ...

  2. 转载: scikit-learn学习之K-means聚类算法与 Mini Batch K-Means算法

    版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ================== ...

  3. 吴恩达深度学习笔记(七) —— Batch Normalization

    主要内容: 一.Batch Norm简介 二.归一化网络的激活函数 三.Batch Norm拟合进神经网络 四.测试时的Batch Norm 一.Batch Norm简介 1.在机器学习中,我们一般会 ...

  4. 聚类K-Means和大数据集的Mini Batch K-Means算法

    import numpy as np from sklearn.datasets import make_blobs from sklearn.cluster import KMeans from s ...

  5. Python机器学习笔记:K-Means算法,DBSCAN算法

    K-Means算法 K-Means 算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means 算法有大量的变体,本文就从最传统的K-Means算法学起,在其基础上学习 ...

  6. [DeeplearningAI笔记]神经网络与深度学习2.11_2.16神经网络基础(向量化)

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.11向量化 向量化是消除代码中显示for循环语句的艺术,在训练大数据集时,深度学习算法才变得高效,所以代码运行的非常快十分重要.所以在深度学 ...

  7. 机器学习实战笔记-k-近邻算法

    机器学习实战笔记-k-近邻算法 目录 1. k-近邻算法概述 2. 示例:使用k-近邻算法改进约会网站的配对效果 3. 示例:手写识别系统 4. 小结 本章介绍了<机器学习实战>这本书中的 ...

  8. Java基础复习笔记基本排序算法

    Java基础复习笔记基本排序算法 1. 排序 排序是一个历来都是很多算法家热衷的领域,到现在还有很多数学家兼计算机专家还在研究.而排序是计算机程序开发中常用的一种操作.为何需要排序呢.我们在所有的系统 ...

  9. 算法笔记_071:SPFA算法简单介绍(Java)

    目录 1 问题描述 2 解决方案 2.1 具体编码   1 问题描述 何为spfa(Shortest Path Faster Algorithm)算法? spfa算法功能:给定一个加权连通图,选取一个 ...

随机推荐

  1. java 多线程 Callable -- 分段处理一个大的list 然后再合并结果

    本文代码参考 http://bbs.csdn.net/topics/391070227?page=1 下面是贴出的代码: public void dealListWithMutiThread(){ L ...

  2. Java与算法之(9) - 直接插入排序

    直接插入排序是最简单的排序算法,也比较符合人的思维习惯.想像一下玩扑克牌抓牌的过程.第一张抓到5,放在手里:第二张抓到3,习惯性的会把它放在5的前面:第三张抓到7,放在5的后面:第四张抓到4,那么我们 ...

  3. 一步一步从原理跟我学邮件收取及发送 2.邮箱的登录和绕不开的base64

    一步一步从原理跟我学邮件收取及发送 2.邮箱的登录和绕不开的base64 好了,经过本系列上一篇文章 "1.网络命令的发送",假设大家已经掌握了 email 电子邮件的命令发送的方 ...

  4. BZOJ 2222: [Cqoi2006]猜数游戏【神奇的做法,傻逼题,猜结论】

    2222: [Cqoi2006]猜数游戏 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 604  Solved: 260[Submit][Status ...

  5. hdu_2030

    一个小小知识点,统计字符串中汉字出现的次数,直接给出代码 //ASCII码的范围是0-127所以,超出范围的都是汉字,因为一个汉字占两个字符位置,所以结果除以2就可以了 #include<cst ...

  6. 用gcc编译c语言程序以及其编译过程

    对于初学c语言编程的我们来说,学会如何使用gcc编译器工具,对理解c语言的执行过程,加深对c语言的理解很重要!!! 1.预编译 --> 2.编译 --> 3.汇编 --> 4.链接- ...

  7. c++(单向链表)

    有的时候,处于内存中的数据并不是连续的.那么这时候,我们就需要在数据结构中添加一个属性,这个属性会记录下面一个数据的地址.有了这个地址之后,所有的数据就像一条链子一样串起来了,那么这个地址属性就起到了 ...

  8. flume1.8 开发指南学习感悟

    概述: Apache Flume是一个分布式.可用的系统,用于从许多不同的sources有效的收集并移动大量日志数据用于集中存储数据. 架构及数据流动模型: flume实际上就是一个Agent.Age ...

  9. Sqoop导入导出的几个例子

    Sqoop导入导出的几个例子 http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_importing_data_into_hive   no ...

  10. 高级设置电脑系统windows7防火墙出错代码0×6D9原因与解决技巧

    高级设置windows防火墙能够更好的保护电脑系统安全,在电脑系统windows7设置过程中难免会遇到某些问题,有用户在安装MRGT后想要打开SNMP的161端口,但在打开高级安全windows防火墙 ...