[DeeplearningAI笔记]Batch NormalizationBN算法Batch归一化_02_3.4-3.7
Batch Normalization
Batch归一化
觉得有用的话,欢迎一起讨论相互学习~Follow Me
3.4正则化网络的激活函数
- Batch归一化会使你的参数搜索问题变得很容易,使神经网络对超参数的选择更加稳定.超参数的范围会更庞大,工作效果也更好.也会使你更容易的训练甚至是深层网络.
- 对于logistic回归来说

正则化原理
\[u=\frac{1}{m}\sum x^{i}(求出平均值u)\]\[x=x-u\] \[\sigma^{2}=\frac{1}{m}\sum(x^{i})^{2}(求出方差)\]\[x=\frac{x}{\sigma^{2}}\]
函数曲线会由类似于椭圆变成更圆的东西,更加易于算法优化.
- 深层神经网络

- 我们将每一层神经网络计算得到的z值(在计算激活函数之前的值)进行归一化处理,即将\(Z^{[L]}的值进行归一化处理,进而影响下一层W^{[L+1]}和b^{[L+1]}\)的计算.

- 此时z的每个分量都含有平均值0和方差1,但我们不想让隐藏单元总是含有平均值0和方差1,例如在应用sigmoid函数时,我们不想使其绘制的函数图像如图所示,我们想要变换方差或者是不同的平均值.


第L层神经元正则化公式
\[u=\frac{1}{m}\sum_{i}Z^{i}\]\[\sigma^{2}=\frac{1}{m}\sum_{i}(Z^{i}-u)^{2}\]\[Z^{i}_{norm}=\frac{Z^{i}-u}{\sqrt{\sigma^2+\epsilon}}\]\[\check{Z^{i}}=\gamma Z^{i}_{norm}+\beta \]
3.5 将Batch Normalization拟合进神经网络

对于Batch Normalization算法而言,计算出一层的\(Z^{[l]}\)之后,进行Batch Normalization操作,次过程将有\(\beta^{[l]},\gamma^{[l]}\)这两个参数控制.这一步操作会给你一个新的规范化的\(z^{[l]}\)值.然后将其输入到激活函数中,得到\(a^{[l]}\)

实质上,BN算法是在每一层的\(Z^{[l]}\)和\(a^{[l]}\)之间进行的运算
3.6 Batch Normalization为什么奏效
原因一
- 无论数据的范围是0~1之间还是1~1000之间,通过归一化,所有的输入特征X,都可以获得类似范围的值,可加速学习.
原因二
- 如果神经元的数据分布改变,我们也许需要重新训练数据以拟合新的数据分布.这会带来一种数据的不稳定的效果.(covariate shift)
- Batch Normalization做的是它减少了这些隐藏值分布变化的数量.因为随着训练的迭代过程,神经元的值会时常发生变化.batch归一化可以确保,无论其怎样变化,其均值和方差将保持不变.(由每一层的BN函数的参数\(\beta^{[l]},\gamma^{[l]}\)决定其方差和均值)
- Batch Normalization减少了输入值改变的问题,它的确使这些值变的稳定,即是原先的层改变了,也会使后面的层适应改变的程度减小.也可以视为它减少了前层参数和后层参数之间的联系.
原因三
- Batch Normalization有轻微的正则化作用.
- BN算法是通过mini-batch计算得出,而不是使用整个数据集,所以会引入部分的噪音,即会在纵轴上有些许波动.
- 缩放的过程从\(Z^{[l]}\rightarrow\check{Z^{[l]}}\)也会引入一些噪音.
- 所以和Dropout算法一样,它往每个隐藏层的激活值上增加了噪音,dropout有噪音的模式,它使一个隐藏的单元以一定的概率乘以0,以一定得概率乘以1.BN算法的噪音主要体现在标准偏差的缩放和减去均值带来的额外噪音.这使得后面层的神经单元不会过分依赖任何一个隐藏单元.有轻微的正则化作用.如果你想获得更好的正则化效果,可以在使用Batch-Normalization的同时使用Dropout算法.
3.7测试时的Batch Normalization
- Batch-Normalization将你的数据以mini-batch的形式逐一处理,但在测试时,你可能需要对每一个样本逐一处理.我们应该怎么做呢~
Batch-Normalization公式

- 注意 对于u和\(\sigma\)是在整个mini-batch上进行计算,但是在测试时,你不会使用一个mini-batch中的所有数据(因为测试时,我们仅仅需要少量数据来验证神经网络训练的正确性即可.)况且如果我们只使用一个数据,那一个样本的均值和方差没有意义,因此我们需要用其他的方式来得到u和\(\sigma\)这两个参数.
- 运用覆盖所有mini-batch的指数加权平均数来估算u和\(\sigma\)
利用指数加权平均来估算\(u和\sigma\)对数据进行测试
对于第L层神经元层,标记mini-batch为\(x^{[1]},x^{[2]},x^{[3]},x^{[4]}...x^{[n]}\)在训练这个隐藏层的第一个mini-batch得到\(u^{[1][l]}\),训练第二个mini-batch得到\(u^{[2][l]}\),训练第三个mini-batch得到\(u^{[3][l]}\)...训练第n个mini-batch得到\(u^{[n][l]}\).然后利用指数加权平均法估算\(u\)的值,同理,以这种方式利用指数加权平均的方法估算\(\sigma^{2}\).
总结
在训练时,u和\(\sigma^{2}\)在整个mini-batch上计算出来的,但是在测试时,我们需要单一估算样本,方法是根据你的训练集估算u和\(\sigma^{2}\).常见的方法有利用指数加权平均进行估算.
[DeeplearningAI笔记]Batch NormalizationBN算法Batch归一化_02_3.4-3.7的更多相关文章
- Batch Normalization原理及其TensorFlow实现——为了减少深度神经网络中的internal covariate shift,论文中提出了Batch Normalization算法,首先是对”每一层“的输入做一个Batch Normalization 变换
批标准化(Bactch Normalization,BN)是为了克服神经网络加深导致难以训练而诞生的,随着神经网络深度加深,训练起来就会越来越困难,收敛速度回很慢,常常会导致梯度弥散问题(Vanish ...
- 转载: scikit-learn学习之K-means聚类算法与 Mini Batch K-Means算法
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ================== ...
- 吴恩达深度学习笔记(七) —— Batch Normalization
主要内容: 一.Batch Norm简介 二.归一化网络的激活函数 三.Batch Norm拟合进神经网络 四.测试时的Batch Norm 一.Batch Norm简介 1.在机器学习中,我们一般会 ...
- 聚类K-Means和大数据集的Mini Batch K-Means算法
import numpy as np from sklearn.datasets import make_blobs from sklearn.cluster import KMeans from s ...
- Python机器学习笔记:K-Means算法,DBSCAN算法
K-Means算法 K-Means 算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means 算法有大量的变体,本文就从最传统的K-Means算法学起,在其基础上学习 ...
- [DeeplearningAI笔记]神经网络与深度学习2.11_2.16神经网络基础(向量化)
觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.11向量化 向量化是消除代码中显示for循环语句的艺术,在训练大数据集时,深度学习算法才变得高效,所以代码运行的非常快十分重要.所以在深度学 ...
- 机器学习实战笔记-k-近邻算法
机器学习实战笔记-k-近邻算法 目录 1. k-近邻算法概述 2. 示例:使用k-近邻算法改进约会网站的配对效果 3. 示例:手写识别系统 4. 小结 本章介绍了<机器学习实战>这本书中的 ...
- Java基础复习笔记基本排序算法
Java基础复习笔记基本排序算法 1. 排序 排序是一个历来都是很多算法家热衷的领域,到现在还有很多数学家兼计算机专家还在研究.而排序是计算机程序开发中常用的一种操作.为何需要排序呢.我们在所有的系统 ...
- 算法笔记_071:SPFA算法简单介绍(Java)
目录 1 问题描述 2 解决方案 2.1 具体编码 1 问题描述 何为spfa(Shortest Path Faster Algorithm)算法? spfa算法功能:给定一个加权连通图,选取一个 ...
随机推荐
- Codeforces 842A Kirill And The Game【暴力,水】
A. Kirill And The Game time limit per test:2 seconds memory limit per test:256 megabytes input:stand ...
- HDU_5504 GT and sequence
GT and sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- win10系统下如何用命令行的方式打开画图软件
按 win + r 后输入命令 mspaint 再 回车 即可!如下图所示:
- 解决指向iframe的target失效
今天遇到一个bug. 主页面中点击左侧导航栏[某]项后,右侧的iframe页面加载到了新窗口.之后,所有选项的iframe加载都异常. 检查<a>标签target="main&q ...
- [学习OpenCV攻略][008][Canny边缘检测]
cvGetSize(输入图片) 得到输入图片的大小 cvCanny(输入图片,输出图片,lowThresh,highThresh,aperture) 把输入图片按设定光圈值进行Canny边缘检测,然后 ...
- node学习笔记1——require参数查找策略
require参数类型 http.fs.path等,原生模块 ./mod或../mod,相对路径的文件模块 /pathtomodule/mod,绝对路径的文件模块 mod,非原生模块的文件模块 mo ...
- Solr学习笔记1(V7.2)
下载压缩包http://archive.apache.org/dist/lucene/,解压后放到某一盘符下面 Windows下启动命令 :\solr-7.2.0>bin\solr.cmd st ...
- maven项目 在eclipse,InteliJ IDEA中的一些问题
转载请注明出处,谢谢! 不论我们用什么ide来编辑我们的代码,最终的产品都会脱离ide来运行:正如燕飞离了巢,正如你离开了家,不期然就会运转出现问题. - 单强 2018年1月26日11:53 大家是 ...
- [基础常识]申请免费SSL证书 - 阿里云云盾证书 - Digicert+Symantec 免费型DV SSL
https://bbs.aliyun.com/read/573933.html?spm=5176.10695662.1996646101.searchclickresult.72be06dct9Qvw ...
- ASP.NET网络爬虫小研究 HtmlAgilityPack基础,爬取数据保存在数据库中再显示再自己的网页中
1.什么是网络爬虫 关于爬虫百度百科这样定义的:网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本.另外一些 ...