Birthday Toy

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 644    Accepted Submission(s): 326

Problem Description
AekdyCoin loves toys. It is AekdyCoin’s Birthday today and he gets a special “Toy”.
The “Toy” is in bulk and AekdyCoin has to make one by him. Let’s assume that the “Toy” has N small white beads and one Big bead .If someone want to make a “Toy”, he (or she) must always puts the Big bead in center, and then connect the other N small beads around it by using N sticks with equal length, and then the N small beads must be connected by N sticks with equal length, and it could be seen as a regular polygon. Figure 1 shows a “Toy” with 8 small white beads and one big white bead.

Now AekdyCoin has C kinds of available color, say blue, green, yellow, pink …etc. He wants to color these beads, but he thinks that must be too boring and stupid. So he colors these beads with one role: any adjacent beads couldn’t have same color. Figure 2 shows a legal situation, and Figure 3 shows an illegal situation.


It seems that the “Toy” becomes more interesting for AekdyCoin right now; however, he wants to color the big bead in center. Of course, he should follow the role above.

Now AekdyCoin begins to play with the “Toy”, he always colors the big beads and then the other small beads. He should color under the rule above. After several minutes, AekdyCoin finally makes a perfect “Toy”. Figure 4 shows a situation that is under the color rule.

AekdyCoin now want to know the different method to color the “Toy” whit at most K color. (“Toy” contains N small beads and one big bead.)
But, no, the problem is not so easy .The repetitions that are produced by rotation around the center of the circular necklace are all neglected. Figure 5 shows 8 “Toy”, they are regard as one method.


Now AekdyCoin will give you N and K, he wants you to help him calculate the number of different methods, because the number of method is so huge, so AekdyCoin just want you to tell him the remainder when divided by M.
In this problem, M = 1,000,000,007.

 
Input
The input consists of several test cases.(at least 1000)
Every case has only two integers indicating N, K 
(3<=N<=10^9, 4<=K<=10^9)
 
Output
For each case, you should output a single line indicates the remainder of number of different methods after divided by M.
 
Sample Input
3 4
3 5
3 17
162 78923
 
Sample Output
8
40
19040
19469065
 
/*
hdu 2865 Polya计数+(矩阵 or 找规律 求C) 给你n个小球全部连在一个大球上然后对他们进行染色,要求相连的球颜色不一样
首先确定大球为一种颜色(k种可能)。然后用剩下k-1种用Polya去处理小球即可 在计算循环节长度为i的可能数时由于k很大,矩阵快速幂很明显不行诶
1.可以考虑递推,假设第一个颜色是x,用f[i][1]表示当前颜色是x,f[i][0]表示当前颜色非x。
f[i][1] = f[i-1][0]
f[i][0] = (k-2)*f[i-1][0]+(k-1)*f[i-1][1] 2.假设用3种颜色染循环节长度为len小球,构建出来的矩阵是
0 1 1 2 1 1 2 3 3 6 5 5 10 11 11
1 0 1 -> 1 2 1 -> 3 2 3 -> 5 6 5 -> 11 10 11
1 1 0 1 1 2 3 3 2 5 5 6 11 11 10
——参考自cxlove大神.
可以发现是有规律的:(2 = 3-1)
n = 1 -> 0 (2^n - 2)
n = 2 -> 6 (2^n + 2)
n = 3 -> 6 (2^n - 2)
n = 4 -> 18 (2^n + 2)
n = 5 -> 30 (2^n - 2)
代码为注释部分 hhh-2016-04-22 10:12:35
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <functional>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
using namespace std;
const ll mod = 1e9 + 7;
const int maxn = 40010; int num;
int prime[maxn];
int isPrime[maxn]; void get_prime()
{
num = 0;
memset(isPrime,0,sizeof(isPrime));
for(int i = 2; i <= maxn-10; i++)
{
if(!isPrime[i])
{
prime[num++] = i;
for(int j = i+i; j <= maxn-10; j+=i)
isPrime[j] = 1;
}
}
} ll euler(ll cur)
{
ll ans = cur;
ll x = cur;
for(int i = 0; i < num && prime[i]*prime[i] <= cur; i++)
{
if(x % prime[i] == 0)
{
ans = ans/prime[i]*(prime[i]-1);
while(x % prime[i] == 0)
x /= prime[i];
}
}
if(x > 1)
{
ans = ans/x*(x-1);
}
return ans%mod;
} ll pow_mod(ll a,ll n)
{
ll ret = 1;
a %= mod;
while(n)
{
if(n & 1) ret = ret*a%mod;
a = a*a%mod;
n >>= 1;
}
return ret%mod;
} /*
another:
ll solve(ll p,ll k)
{
ll ans=pow_mod(p-1,k);
if(k&1)
ans=(ans+mod-(p-1))%mod;
else
ans=(ans+p-1)%mod;
return ans;
}
*/ struct Matrix
{
ll ma[3][3];
Matrix()
{
memset(ma,0,sizeof(ma));
}
}; Matrix mult(Matrix ta,Matrix tb)
{
Matrix tc;
for(int i = 0 ; i < 2; i ++)
{
for(int j = 0; j < 2; j++)
{
for(int k = 0; k < 2; k++)
tc.ma[i][j] = (tc.ma[i][j] + ta.ma[i][k]*tb.ma[k][j]%mod)%mod;
}
}
return tc;
} Matrix Mat_mod(Matrix a,int n)
{
Matrix cnt;
for(int i = 0; i < 2; i++)
cnt.ma[i][i] = 1;
while(n)
{
if(n & 1 ) cnt = mult(cnt,a);
a = mult(a,a);
n >>= 1;
}
return cnt;
} Matrix mat;
Matrix begi; ll solve(ll p,ll k)
{
begi.ma[0][1] = 1,begi.ma[0][0] = 0,begi.ma[1][0] = 0,begi.ma[1][1] = 0;
mat.ma[0][0] = p - 2, mat.ma[1][0] = p - 1, mat.ma[0][1] = 1, mat.ma[1][1] = 0;
mat = Mat_mod(mat,k-1);
Matrix tp = mult(begi,mat);
return p*tp.ma[0][0]%mod;
} ll cal(ll n,ll k)
{
ll ans = 0;
for(int i = 1; i*i <= n; i++)
{
if(n % i == 0)
{
ans = (ans + solve(k,n/i)*euler(i)%mod)%mod;
if(n != i*i)
ans = (ans + solve(k,i)*euler(n/i)%mod)%mod;
}
}
return (ans*pow_mod(n,mod-2))%mod;
} ll N,k; int main()
{
get_prime();
while(scanf("%I64d%I64d",&N,&k) != EOF)
{
printf("%I64d\n",k*cal(N,k-1)%mod);
}
return 0;
}

  

hdu 2865 Polya计数+(矩阵 or 找规律 求C)的更多相关文章

  1. hdu 5868 Polya计数

    Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K ...

  2. 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)

    题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...

  3. 2018年东北农业大学春季校赛 B wyh的矩阵【找规律】

    链接:https://www.nowcoder.com/acm/contest/93/B来源:牛客网 题目描述 给你一个n*n矩阵,按照顺序填入1到n*n的数,例如n=5,该矩阵如下 1 2 3 4 ...

  4. HDU 4388 Stone Game II 博弈论 找规律

    http://acm.hdu.edu.cn/showproblem.php?pid=4388 http://blog.csdn.net/y1196645376/article/details/5214 ...

  5. HDU 4349 Xiao Ming's Hope 找规律

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4349 Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/ ...

  6. HDU 4731 Minimum palindrome 打表找规律

    http://acm.hdu.edu.cn/showproblem.php?pid=4731 就做了两道...也就这题还能发博客了...虽然也是水题 先暴力DFS打表找规律...发现4个一组循环节.. ...

  7. HDU 4588 Count The Carries(找规律,模拟)

    题目 大意: 求二进制的a加到b的进位数. 思路: 列出前几个2进制,找规律模拟. #include <stdio.h> #include <iostream> #includ ...

  8. HDU 3032 (SG打表找规律)

    题意: 有n堆石子,alice先取,每次可以选择拿走一堆石子中的1~x(该堆石子总数) ,也可以选择将这堆石子分成任意的两堆.alice与bob轮流取,取走最后一个石子的人胜利. 思路: 因为数的范围 ...

  9. 2017ACM暑期多校联合训练 - Team 1 1011 HDU 6043 KazaQ's Socks (找规律)

    题目链接 Problem Description KazaQ wears socks everyday. At the beginning, he has n pairs of socks numbe ...

随机推荐

  1. 20145237 实验二 “Java面向对象程序设计”

    20145237 实验二 “Java面向对象程序设计” 实验内容 • 理解并掌握面向对象三要素:封装.继承.多态 • 初步掌握UML建模 • 熟悉S.O.L.I.D原则 • 使用TDD设计实现复数类 ...

  2. python pdb 调试

    命令行 Python -m pdb xxx.py l ----> list 显示当前代码 n ----> next 向下执行一行代码 c ----> continue 继续执行代码 ...

  3. JAVAGUI设计步骤

    ①创建容器 首先要创建一个GUI应用程序,需要创建一个用于容纳所有其它GUI组件元素的载体,Java中称为容器.典型的包括窗口(Window).框架(Frame/JFrame).对话框(Dialog/ ...

  4. bzoj千题计划274:bzoj3779: 重组病毒

    http://www.lydsy.com/JudgeOnline/problem.php?id=3779 有一棵树,初始每个节点有不同的颜色 操作1:根节点到x的路径上的点 染上一种没有出现过的颜色 ...

  5. vue mint-ui 三级地址联动

    我也是第一次写这种地址联动的 刚开始的时候 我还以为直接用select来写 后来公司的ios告知并不是这样的 他说应该时这样的 于是第一想法 赶紧找插件吧 但是找了一会未果  就问了公司大神 他刚开始 ...

  6. Windows 的Apache支持SSI配置

    配置SSI什么是shtml? 使用SSI(Server Side Include)的html文件扩展名,SSI(Server Side Include),通常称为"服务器端嵌入"或 ...

  7. python全栈开发-logging模块(日记专用)

    一.概述 很多程序都有记录日志的需求,并且日志中包含的信息即有正常的程序访问日志,还可能有错误.警告等信息输出,python的logging模块提供了标准的日志接口,你可以通过它存储各种格式的日志,l ...

  8. c 语言的基本语法

    1,c的令牌(Tokens) printf("Hello, World! \n"); 这五个令牌是: printf ( "Hello, World! \n" ) ...

  9. proxymysql的安装与应用

    具体的资料我们可以查看官方的文档:https://github.com/sysown/proxysql/wiki/ProxySQL-Configuration 推荐下载最新的Proxysql. 下面跟 ...

  10. CentOS7 安装eclipse

    1. 首先将eclipse的压缩包文件解压到/opt目录下,要使用root权限.执行如下解压命令:tar -zxvf eclipse-jee-oxygen-1a-linux-gtk-x86_64.ta ...