p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #042eee }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px "Helvetica Neue"; color: #323333 }
p.p4 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333; min-height: 16.0px }
p.p5 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px STIXGeneral; color: #323333 }
p.p6 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px STIXGeneral; color: #323333 }
p.p7 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px "Helvetica Neue"; color: #323333; min-height: 20.0px }
p.p8 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px STIXSizeOneSym; color: #323333 }
p.p9 { margin: 0.0px 0.0px 0.0px 0.0px; text-align: center; font: 17.0px STIXGeneral; color: #323333 }
p.p10 { margin: 0.0px 0.0px 0.0px 0.0px; text-align: center; font: 14.0px "Helvetica Neue"; color: #323333 }
p.p11 { margin: 0.0px 0.0px 0.0px 0.0px; font: 9.0px STIXGeneral; color: #323333 }
li.li2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
span.s1 { text-decoration: underline }
span.s2 { }
span.s3 { vertical-align: -0.5px }
span.s4 { vertical-align: -9.0px }
ul.ul1 { list-style-type: disc }
ul.ul2 { list-style-type: circle }

https://www.csee.umbc.edu/~hpirsiav/papers/cascade_cvpr17.pdf

Weakly Supervised Cascaded Convolutional Networks, Ali Diba, Vivek Sharma, Ali Pazandeh, Hamed Pirsiavash and Luc Van Gool

亮点

  • 通过多任务叠加(分类,分割)提高了多物体弱监督检测的正确率
  • 通过利用segmentation筛选纯净的proposals,得到了更鲁棒的结果
  • 为弱监督分割任务设计比较鲁棒的loss
    • 只考虑全局的分类结果和置信度对高的部分
    • 通过loss的weights关注到最需要关注的部分

相关工作 

One of the most common approaches [7] consists of the following steps:

  • generates object proposals,
  • extracts features from the proposals,
  • applies multiple instance learning (MIL) to the features and finds the box labels from the weak bag (image) labels.

弱监督物体检测难点: 弱监督物体检测对初始化要求很高,不好的初始化可能会使网络陷入局部最优解,解决的办法主要有以下几个:

  • improve the initialization [31, 9, 28, 29]
  • regularizing the optimization strategies [4, 5, 7]
  • [17] employ an iterative self-learning strategy to employ harder samples to a small set of initial samples
  • [15] use a convex relaxation of soft-max loss

Majority of the previous works [25, 32] use a large collection of noisy object proposals to train their object detector. In contrast, our method only focuses on a very few clean collection of object proposals that are far more reliable, robust, computationally efficient, and gives better performance

方法

Two-stage: proposal and image classification (conv1 till con5, global pooling) + multiple instance learning (2fc, score layer)

1. image classification: CNN with global average pooling (GAP) [36]中引入,将分类过程中fc层的weights作为原来convolutional layer输出的权重并将所有频道加权得到的图作为class activation map。在这一步中,还产生一个分类的loss LGAP

[36]  B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features for discriminative localization. In CVPR, 2016. 3, 4, 5, 6, 7, 8

2. multiple instance learning

Proposal: edgeboxs [37] is used to generate an initial set of object proposals. Then we threshold the class activation map [36] to come up with a mask. Finally, we choose the initial boxes with largest overlap with the mask.

Three-stage:  more information about the objects’ boundary learned in a segmentation task can lead to acquisition of a better appearance model and then better object localization.

  • 主要思想:分割监督信号帮助提升定位准确率。
  • 弱分割监督信号:上一级得到的mask

实验结果

PASCAL VOC 2007

  • +3.3% classification compared with [18]
  • +1.6% correct localization compared with [27]
  • +0.6% compared with [6]

PASCAL VOC 2010

  • +3.3% compared with [6]

PASCAL VOC 2012

  • +8.8% compared with [18]
  • ILSVRC 2013
  • +5.5% compared with [18]

Object detection training

  • PASCAL VOC 2007 test set: Faster RCNN trained by the pseudo ground-truth (GT) bounding boxes generated by our cascaded networks performs slightly better than our transfered model. (+0.3%)

[6] H. Bilen and A. Vedaldi. Weakly supervised deep detection networks. In CVPR, 2016. 6, 7, 8

[18] D. Li, J.-B. Huang, Y. Li, S. Wang, and M.-H. Yang. Weakly supervised object localization with progressive domain adaptation. In IEEE Conference on Computer Vision and Pattern Recognition, 2016. 2, 6, 7

[27] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. 5, 6

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px "Helvetica Neue"; color: #323333 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
li.li2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
span.s1 { }
ul.ul1 { list-style-type: disc }
ul.ul2 { list-style-type: circle }
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #042eee }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px "Helvetica Neue"; color: #323333 }
p.p4 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333; min-height: 16.0px }
p.p5 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px STIXGeneral; color: #323333 }
p.p6 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px STIXGeneral; color: #323333 }
p.p7 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px "Helvetica Neue"; color: #323333; min-height: 20.0px }
p.p8 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px STIXSizeOneSym; color: #323333 }
p.p9 { margin: 0.0px 0.0px 0.0px 0.0px; text-align: center; font: 17.0px STIXGeneral; color: #323333 }
p.p10 { margin: 0.0px 0.0px 0.0px 0.0px; text-align: center; font: 14.0px "Helvetica Neue"; color: #323333 }
p.p11 { margin: 0.0px 0.0px 0.0px 0.0px; font: 9.0px STIXGeneral; color: #323333 }
li.li2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
span.s1 { text-decoration: underline }
span.s2 { }
span.s3 { vertical-align: -0.5px }
span.s4 { vertical-align: -9.0px }
ul.ul1 { list-style-type: disc }
ul.ul2 { list-style-type: circle }

[CVPR2017] Weakly Supervised Cascaded Convolutional Networks论文笔记的更多相关文章

  1. [CVPR 2016] Weakly Supervised Deep Detection Networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  2. [论文阅读] Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks(MTCNN)

    相关论文:Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks 概论 用于人脸检测和对 ...

  3. Visualizing and Understanding Convolutional Networks论文复现笔记

    目录 Visualizing and Understanding Convolutional Networks 论文复现笔记 Abstract Introduction Approach Visual ...

  4. 《Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks》

    <Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks> 论文主要的三个贡 ...

  5. Densely Connected Convolutional Networks 论文阅读

    毕设终于告一段落,传统方法的视觉做得我整个人都很奔溃,终于结束,可以看些搁置很久的一些论文了,嘤嘤嘤 Densely Connected Convolutional Networks 其实很早就出来了 ...

  6. 【Semantic Segmentation】 Instance-sensitive Fully Convolutional Networks论文解析(转)

    这篇文章比较简单,但还是不想写overview,转自: https://blog.csdn.net/zimenglan_sysu/article/details/52451098 另外,读这篇pape ...

  7. 【Detection】R-FCN: Object Detection via Region-based Fully Convolutional Networks论文分析

    目录 0. Paper link 1. Overview 2. position-sensitive score maps 2.1 Background 2.2 position-sensitive ...

  8. [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  9. Bag of Tricks for Image Classification with Convolutional Neural Networks论文笔记

    一.高效的训练     1.Large-batch training 使用大的batch size可能会减小训练过程(收敛的慢?我之前训练的时候挺喜欢用较大的batch size),即在相同的迭代次数 ...

随机推荐

  1. Python学习笔记 - 函数参数

    >>> def power(x): ... return x * x ... >>> power(5) 25 >>> def power(x, n ...

  2. 2014新年福利,居然有人将Ext JS 4.1的文档翻译了

    原文:http://damoqiongqiu.iteye.com/blog/1998022

  3. Android不同系统版本依然能调用到正确的API方法Demo——Service调用startForeground举例

    private static final Class<?>[] mSetForegroundSignature = new Class[] { boolean.class}; privat ...

  4. Collections.sort()的分析

    首先我们得说明在Collections里面有两个排序方法 public static <T> void sort(List<T> list, Comparator<? s ...

  5. 02_Nginx基本配置与参数说明 + 辅助命令

     Nginx基本配置与参数说明,下面是nginx.conf配置文件 #运行用户 #user  nobody; worker_processes  2; #全局错误日志及PID文件 #error_l ...

  6. C++之默认参数

    C++可以为不指定参数提供默认值.一旦给一个参数赋了默认值,后面的所有参数,也都必须为默认值,并且默认值的类型也必须正确,默认值可以在原型或者函数定义中给出,但是不能两个位置同时给出. 接下来我们上代 ...

  7. Unity修改Particles Render Material(Unity3D开发之二十三)

    猴子原创,欢迎转载.转载请注明: 转载自Cocos2Der-CSDN,谢谢! 原文地址: http://blog.csdn.net/cocos2der/article/details/48372999 ...

  8. Windows2008修改密码策略简单介绍

    Windows2008修改密码策略简单介绍 Windows的密码策略,确实是挺繁琐的,刚接触SharePoint2010,装的windows2008 R2,就遇到了改密码策略的问题. 打开本地安全策略 ...

  9. os X下mds_stores占用大量cpu的解决办法

    有时候发现, MacOS中, 有个叫做mds_stores的进程占了好多CPU, 于是要阻止这个行为, 据说这是MacOS在建索引然后只要把这个索引的关掉就好了 sh-3.2# mdutil -a - ...

  10. PHP变量的定义与相应的数据类型

    在PHP中,变量的定义和C语言定义的方法是类似的,但是在PHP中,变量使用起来就非常灵活,一个变量既可以做整型,也可以是浮点型,也可以是字符串或者字符类型,通通只要在变量名前面加一个$然后加上你的变量 ...