p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #042eee }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px "Helvetica Neue"; color: #323333 }
p.p4 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333; min-height: 16.0px }
p.p5 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px STIXGeneral; color: #323333 }
p.p6 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px STIXGeneral; color: #323333 }
p.p7 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px "Helvetica Neue"; color: #323333; min-height: 20.0px }
p.p8 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px STIXSizeOneSym; color: #323333 }
p.p9 { margin: 0.0px 0.0px 0.0px 0.0px; text-align: center; font: 17.0px STIXGeneral; color: #323333 }
p.p10 { margin: 0.0px 0.0px 0.0px 0.0px; text-align: center; font: 14.0px "Helvetica Neue"; color: #323333 }
p.p11 { margin: 0.0px 0.0px 0.0px 0.0px; font: 9.0px STIXGeneral; color: #323333 }
li.li2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
span.s1 { text-decoration: underline }
span.s2 { }
span.s3 { vertical-align: -0.5px }
span.s4 { vertical-align: -9.0px }
ul.ul1 { list-style-type: disc }
ul.ul2 { list-style-type: circle }

https://www.csee.umbc.edu/~hpirsiav/papers/cascade_cvpr17.pdf

Weakly Supervised Cascaded Convolutional Networks, Ali Diba, Vivek Sharma, Ali Pazandeh, Hamed Pirsiavash and Luc Van Gool

亮点

  • 通过多任务叠加(分类,分割)提高了多物体弱监督检测的正确率
  • 通过利用segmentation筛选纯净的proposals,得到了更鲁棒的结果
  • 为弱监督分割任务设计比较鲁棒的loss
    • 只考虑全局的分类结果和置信度对高的部分
    • 通过loss的weights关注到最需要关注的部分

相关工作 

One of the most common approaches [7] consists of the following steps:

  • generates object proposals,
  • extracts features from the proposals,
  • applies multiple instance learning (MIL) to the features and finds the box labels from the weak bag (image) labels.

弱监督物体检测难点: 弱监督物体检测对初始化要求很高,不好的初始化可能会使网络陷入局部最优解,解决的办法主要有以下几个:

  • improve the initialization [31, 9, 28, 29]
  • regularizing the optimization strategies [4, 5, 7]
  • [17] employ an iterative self-learning strategy to employ harder samples to a small set of initial samples
  • [15] use a convex relaxation of soft-max loss

Majority of the previous works [25, 32] use a large collection of noisy object proposals to train their object detector. In contrast, our method only focuses on a very few clean collection of object proposals that are far more reliable, robust, computationally efficient, and gives better performance

方法

Two-stage: proposal and image classification (conv1 till con5, global pooling) + multiple instance learning (2fc, score layer)

1. image classification: CNN with global average pooling (GAP) [36]中引入,将分类过程中fc层的weights作为原来convolutional layer输出的权重并将所有频道加权得到的图作为class activation map。在这一步中,还产生一个分类的loss LGAP

[36]  B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features for discriminative localization. In CVPR, 2016. 3, 4, 5, 6, 7, 8

2. multiple instance learning

Proposal: edgeboxs [37] is used to generate an initial set of object proposals. Then we threshold the class activation map [36] to come up with a mask. Finally, we choose the initial boxes with largest overlap with the mask.

Three-stage:  more information about the objects’ boundary learned in a segmentation task can lead to acquisition of a better appearance model and then better object localization.

  • 主要思想:分割监督信号帮助提升定位准确率。
  • 弱分割监督信号:上一级得到的mask

实验结果

PASCAL VOC 2007

  • +3.3% classification compared with [18]
  • +1.6% correct localization compared with [27]
  • +0.6% compared with [6]

PASCAL VOC 2010

  • +3.3% compared with [6]

PASCAL VOC 2012

  • +8.8% compared with [18]
  • ILSVRC 2013
  • +5.5% compared with [18]

Object detection training

  • PASCAL VOC 2007 test set: Faster RCNN trained by the pseudo ground-truth (GT) bounding boxes generated by our cascaded networks performs slightly better than our transfered model. (+0.3%)

[6] H. Bilen and A. Vedaldi. Weakly supervised deep detection networks. In CVPR, 2016. 6, 7, 8

[18] D. Li, J.-B. Huang, Y. Li, S. Wang, and M.-H. Yang. Weakly supervised object localization with progressive domain adaptation. In IEEE Conference on Computer Vision and Pattern Recognition, 2016. 2, 6, 7

[27] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. 5, 6

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px "Helvetica Neue"; color: #323333 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
li.li2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
span.s1 { }
ul.ul1 { list-style-type: disc }
ul.ul2 { list-style-type: circle }
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #042eee }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px "Helvetica Neue"; color: #323333 }
p.p4 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333; min-height: 16.0px }
p.p5 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px STIXGeneral; color: #323333 }
p.p6 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px STIXGeneral; color: #323333 }
p.p7 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px "Helvetica Neue"; color: #323333; min-height: 20.0px }
p.p8 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px STIXSizeOneSym; color: #323333 }
p.p9 { margin: 0.0px 0.0px 0.0px 0.0px; text-align: center; font: 17.0px STIXGeneral; color: #323333 }
p.p10 { margin: 0.0px 0.0px 0.0px 0.0px; text-align: center; font: 14.0px "Helvetica Neue"; color: #323333 }
p.p11 { margin: 0.0px 0.0px 0.0px 0.0px; font: 9.0px STIXGeneral; color: #323333 }
li.li2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
span.s1 { text-decoration: underline }
span.s2 { }
span.s3 { vertical-align: -0.5px }
span.s4 { vertical-align: -9.0px }
ul.ul1 { list-style-type: disc }
ul.ul2 { list-style-type: circle }

[CVPR2017] Weakly Supervised Cascaded Convolutional Networks论文笔记的更多相关文章

  1. [CVPR 2016] Weakly Supervised Deep Detection Networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  2. [论文阅读] Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks(MTCNN)

    相关论文:Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks 概论 用于人脸检测和对 ...

  3. Visualizing and Understanding Convolutional Networks论文复现笔记

    目录 Visualizing and Understanding Convolutional Networks 论文复现笔记 Abstract Introduction Approach Visual ...

  4. 《Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks》

    <Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks> 论文主要的三个贡 ...

  5. Densely Connected Convolutional Networks 论文阅读

    毕设终于告一段落,传统方法的视觉做得我整个人都很奔溃,终于结束,可以看些搁置很久的一些论文了,嘤嘤嘤 Densely Connected Convolutional Networks 其实很早就出来了 ...

  6. 【Semantic Segmentation】 Instance-sensitive Fully Convolutional Networks论文解析(转)

    这篇文章比较简单,但还是不想写overview,转自: https://blog.csdn.net/zimenglan_sysu/article/details/52451098 另外,读这篇pape ...

  7. 【Detection】R-FCN: Object Detection via Region-based Fully Convolutional Networks论文分析

    目录 0. Paper link 1. Overview 2. position-sensitive score maps 2.1 Background 2.2 position-sensitive ...

  8. [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  9. Bag of Tricks for Image Classification with Convolutional Neural Networks论文笔记

    一.高效的训练     1.Large-batch training 使用大的batch size可能会减小训练过程(收敛的慢?我之前训练的时候挺喜欢用较大的batch size),即在相同的迭代次数 ...

随机推荐

  1. 浅析GDAL库C#版本支持中文路径问题(续)

    上篇博客中主要说了GDAL库C#版本中存在的问题,其表现形式主要是:"文件名中的汉字个数是偶数,完全没有影响,读取和创建都正常,如果文件名中的汉字个数是奇数,读取和创建都会报错." ...

  2. 不要使用jQuery触发原生事件

    原文链接: DO NOT TRIGGER REAL EVENT NAMES WITH JQUERY! 原文日期: 2014年02月26日 翻译日期: 2014年03月2日 翻译人员: 铁锚 JavaS ...

  3. Java-ServletRequestEvent-ServletRequestAttributeEvent

    /** * Events of this kind indicate lifecycle * events for a ServletRequest. * The source of the even ...

  4. FPGrowth 实现

    在关联规则挖掘领域最经典的算法法是Apriori,其致命的缺点是需要多次扫描事务数据库.于是人们提出了各种裁剪(prune)数据集的方法以减少I/O开支,韩嘉炜老师的FP-Tree算法就是其中非常高效 ...

  5. 【Android 应用开发】Android 开发错误集锦

    1. eclipse的Device中不显示手机 在eclipse中连接不上手机,出现adb server didn't ACK  fail to start daemon 错误. 出现这种原因是因为a ...

  6. 【Android 应用开发】对Android体系结构的理解--后续会补充

    1.最底层_硬件 任何Android设备最底层的硬件包括 显示屏, wifi ,存储设备 等. Android最底层的硬件会根据需要进行裁剪,选择自己需要的硬件. 2.Linux内核层 该层主要对硬件 ...

  7. 【37】String,StringBuffer,StringBuilder区别和概念

    基本的概念: 查看 API 会发现,String.StringBuffer.StringBuilder 都实现了 CharSequence 接口,内部都是用一个char数组实现,虽然它们都与字符串相关 ...

  8. mybatis 开发环境搭建

    不说废话直接上代码,首先看下我的目录机构: 红色部分,表明你所需的jar包,已经配置文件. 创建用户表,以及插入数据. create table books(id int (11) not null ...

  9. 从ruby实现时间服务器ntp同步功能也谈“逆向工程”

    本猫以前写asm和C的时候常常不忘"逆向"一把,后来写驱动的时候也用VM之类的搭建"双机"调试环境进行调试:也对于一些小的软件crack cd-key神马的不亦 ...

  10. Fullpage参数说明

    参数说明 $(document).ready(function() { $('#fullpage').fullpage({ //Navigation menu: false,//绑定菜单,设定的相关属 ...