p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #042eee }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px "Helvetica Neue"; color: #323333 }
p.p4 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333; min-height: 16.0px }
p.p5 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px STIXGeneral; color: #323333 }
p.p6 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px STIXGeneral; color: #323333 }
p.p7 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px "Helvetica Neue"; color: #323333; min-height: 20.0px }
p.p8 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px STIXSizeOneSym; color: #323333 }
p.p9 { margin: 0.0px 0.0px 0.0px 0.0px; text-align: center; font: 17.0px STIXGeneral; color: #323333 }
p.p10 { margin: 0.0px 0.0px 0.0px 0.0px; text-align: center; font: 14.0px "Helvetica Neue"; color: #323333 }
p.p11 { margin: 0.0px 0.0px 0.0px 0.0px; font: 9.0px STIXGeneral; color: #323333 }
li.li2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
span.s1 { text-decoration: underline }
span.s2 { }
span.s3 { vertical-align: -0.5px }
span.s4 { vertical-align: -9.0px }
ul.ul1 { list-style-type: disc }
ul.ul2 { list-style-type: circle }

https://www.csee.umbc.edu/~hpirsiav/papers/cascade_cvpr17.pdf

Weakly Supervised Cascaded Convolutional Networks, Ali Diba, Vivek Sharma, Ali Pazandeh, Hamed Pirsiavash and Luc Van Gool

亮点

  • 通过多任务叠加(分类,分割)提高了多物体弱监督检测的正确率
  • 通过利用segmentation筛选纯净的proposals,得到了更鲁棒的结果
  • 为弱监督分割任务设计比较鲁棒的loss
    • 只考虑全局的分类结果和置信度对高的部分
    • 通过loss的weights关注到最需要关注的部分

相关工作 

One of the most common approaches [7] consists of the following steps:

  • generates object proposals,
  • extracts features from the proposals,
  • applies multiple instance learning (MIL) to the features and finds the box labels from the weak bag (image) labels.

弱监督物体检测难点: 弱监督物体检测对初始化要求很高,不好的初始化可能会使网络陷入局部最优解,解决的办法主要有以下几个:

  • improve the initialization [31, 9, 28, 29]
  • regularizing the optimization strategies [4, 5, 7]
  • [17] employ an iterative self-learning strategy to employ harder samples to a small set of initial samples
  • [15] use a convex relaxation of soft-max loss

Majority of the previous works [25, 32] use a large collection of noisy object proposals to train their object detector. In contrast, our method only focuses on a very few clean collection of object proposals that are far more reliable, robust, computationally efficient, and gives better performance

方法

Two-stage: proposal and image classification (conv1 till con5, global pooling) + multiple instance learning (2fc, score layer)

1. image classification: CNN with global average pooling (GAP) [36]中引入,将分类过程中fc层的weights作为原来convolutional layer输出的权重并将所有频道加权得到的图作为class activation map。在这一步中,还产生一个分类的loss LGAP

[36]  B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features for discriminative localization. In CVPR, 2016. 3, 4, 5, 6, 7, 8

2. multiple instance learning

Proposal: edgeboxs [37] is used to generate an initial set of object proposals. Then we threshold the class activation map [36] to come up with a mask. Finally, we choose the initial boxes with largest overlap with the mask.

Three-stage:  more information about the objects’ boundary learned in a segmentation task can lead to acquisition of a better appearance model and then better object localization.

  • 主要思想:分割监督信号帮助提升定位准确率。
  • 弱分割监督信号:上一级得到的mask

实验结果

PASCAL VOC 2007

  • +3.3% classification compared with [18]
  • +1.6% correct localization compared with [27]
  • +0.6% compared with [6]

PASCAL VOC 2010

  • +3.3% compared with [6]

PASCAL VOC 2012

  • +8.8% compared with [18]
  • ILSVRC 2013
  • +5.5% compared with [18]

Object detection training

  • PASCAL VOC 2007 test set: Faster RCNN trained by the pseudo ground-truth (GT) bounding boxes generated by our cascaded networks performs slightly better than our transfered model. (+0.3%)

[6] H. Bilen and A. Vedaldi. Weakly supervised deep detection networks. In CVPR, 2016. 6, 7, 8

[18] D. Li, J.-B. Huang, Y. Li, S. Wang, and M.-H. Yang. Weakly supervised object localization with progressive domain adaptation. In IEEE Conference on Computer Vision and Pattern Recognition, 2016. 2, 6, 7

[27] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. 5, 6

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px "Helvetica Neue"; color: #323333 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
li.li2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
span.s1 { }
ul.ul1 { list-style-type: disc }
ul.ul2 { list-style-type: circle }
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #042eee }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px "Helvetica Neue"; color: #323333 }
p.p4 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333; min-height: 16.0px }
p.p5 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px STIXGeneral; color: #323333 }
p.p6 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px STIXGeneral; color: #323333 }
p.p7 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px "Helvetica Neue"; color: #323333; min-height: 20.0px }
p.p8 { margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px STIXSizeOneSym; color: #323333 }
p.p9 { margin: 0.0px 0.0px 0.0px 0.0px; text-align: center; font: 17.0px STIXGeneral; color: #323333 }
p.p10 { margin: 0.0px 0.0px 0.0px 0.0px; text-align: center; font: 14.0px "Helvetica Neue"; color: #323333 }
p.p11 { margin: 0.0px 0.0px 0.0px 0.0px; font: 9.0px STIXGeneral; color: #323333 }
li.li2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 }
span.s1 { text-decoration: underline }
span.s2 { }
span.s3 { vertical-align: -0.5px }
span.s4 { vertical-align: -9.0px }
ul.ul1 { list-style-type: disc }
ul.ul2 { list-style-type: circle }

[CVPR2017] Weakly Supervised Cascaded Convolutional Networks论文笔记的更多相关文章

  1. [CVPR 2016] Weakly Supervised Deep Detection Networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  2. [论文阅读] Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks(MTCNN)

    相关论文:Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks 概论 用于人脸检测和对 ...

  3. Visualizing and Understanding Convolutional Networks论文复现笔记

    目录 Visualizing and Understanding Convolutional Networks 论文复现笔记 Abstract Introduction Approach Visual ...

  4. 《Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks》

    <Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks> 论文主要的三个贡 ...

  5. Densely Connected Convolutional Networks 论文阅读

    毕设终于告一段落,传统方法的视觉做得我整个人都很奔溃,终于结束,可以看些搁置很久的一些论文了,嘤嘤嘤 Densely Connected Convolutional Networks 其实很早就出来了 ...

  6. 【Semantic Segmentation】 Instance-sensitive Fully Convolutional Networks论文解析(转)

    这篇文章比较简单,但还是不想写overview,转自: https://blog.csdn.net/zimenglan_sysu/article/details/52451098 另外,读这篇pape ...

  7. 【Detection】R-FCN: Object Detection via Region-based Fully Convolutional Networks论文分析

    目录 0. Paper link 1. Overview 2. position-sensitive score maps 2.1 Background 2.2 position-sensitive ...

  8. [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  9. Bag of Tricks for Image Classification with Convolutional Neural Networks论文笔记

    一.高效的训练     1.Large-batch training 使用大的batch size可能会减小训练过程(收敛的慢?我之前训练的时候挺喜欢用较大的batch size),即在相同的迭代次数 ...

随机推荐

  1. Android For JNI(四)——C的数组,指针长度,堆内存和栈内存,malloc,学生管理系统

    Android For JNI(四)--C的数组,指针长度,堆内存和栈内存,malloc,学生管理系统 好几天每写JNI了,现在任务也越来越重了,工作的强度有点高,还有好几个系列的博客要等着更新,几本 ...

  2. 菜鸟玩云计算之二十:saltstack入门初步

    菜鸟玩云计算之二十 SaltStack 入门初步 0. saltstack 是什么 参考下面的文章: http://docs.saltstack.com/en/latest/topics/tutori ...

  3. 求剁手的分享,如何简单开发js图表

    前段时间做的一个项目里需要用到js图表,在网上找了下,大概找到了highcharts.fusioncharts这些国外产品. 因为都收费,虽然有盗版,我也不敢用,万一被找上们来就砸锅卖铁了要.自己写j ...

  4. TCP的核心系列 — SACK和DSACK的实现(三)

    不论是18版,还是37版,一开始都会从TCP的控制块中取出SACK选项的起始地址. SACK选项的起始地址是保存在tcp_skb_cb结构的sacked项中的,那么这是在什么时候做的呢? SACK块并 ...

  5. 通过COM组件方式实现java调用C#写的DLL文件

    转自这里 最近一段时间单位在做一个Web项目,工程师用JAVA语言,需要公用人员信息,统一用户名和密码,原有的平台中是用C#语言开发的,在网上查找解决方法,通过JAVA调用C#的DLL文件实现.网上资 ...

  6. linux内核算法---hex_to_bin分享

    这是我从内核抠出来的一段代码,用处就是传入一个字符,即可以用printf语句%d以十进制数的格式输出,同时也可以以%p地址的形式输出. 代码如下: #include <stdio.h> # ...

  7. "《算法导论》之‘树’":AVL树

    本文关于AVL树的介绍引自博文AVL树(二)之 C++的实现,与二叉查找树相同的部分则不作介绍直接引用:代码实现是在本文的基础上自己实现且继承自上一篇博文二叉查找树. 1.AVL树的介绍 AVL树是高 ...

  8. 第一个Polymer应用 - (2)创建你自己的元素

    原文链接: Step 2: Your own element翻译日期: 2014年7月6日翻译人员: 铁锚通过上一节的学习和实践, 您已经完成了一个基本的应用程序结构(application stru ...

  9. 苹果新的编程语言 Swift 语言进阶(十)--类的继承

    一.类的继承 类能够从其它类继承方法.属性以及其它特性,当一个类从另外的类继承时,继承的类称为子类,它继承的类称为超类.在Swift中,继承是类区别与其它类型(结构.枚举)的基础行为. 1.1 .类的 ...

  10. win7 64位系统,vs2010下配置OpenGL开发环境

    glut下载地址: http://www.opengl.org/resources/libraries/glut/glutdlls37beta.zip 或者:http://user.xmission. ...