Nonlinear Component Analysis as a Kernel Eigenvalue Problem
引
普通的PCA将下式进行特征分解(用论文的话讲就是对角化):
\]
其中\(x_j \in \mathbb{R}^{N}, j = 1, \ldots, M\),且\(\sum \limits_{j=1}^M x_j = 0\)(中心化)。
而kernel PCA试图通过一个非线性函数:
\]
其中\(F\)是一个高维空间(甚至是无限维)。
所以我们要解决这么一个问题:
\]
其实我们面对的第一个问题不是维度的问题而是\(\Phi\)的选择或者说构造。我们为什么要把数据映射到高维的空间?因为当前数据的结构(或者说分布)并不理想。
比如满足\((x-1)^2+(y-1)^2=4\)的点,我们可以扩充到高维空间\((x^2, x, y, y^2)\),在高维空间是线性的(虽然这个例子用在kernel SVM 比较好)。
因为\(\Phi(\cdot)\)的构造蛮麻烦的,即便有一些先验知识。我们来看一种比较简单的泛用的映射:
\]
这种样子的映射,很容易把维度扩充到很大很大,这个时候求解特征问题会变得很麻烦。
kernel PCA
假设\(\sum \limits_{i=1}^M \Phi(x_i)=0\)(如何保证这个性质的成立在最后讲,注意即便\(\sum \limits_{i=1}^M x_i = 0\),\(\sum \limits_{i=1}^M \Phi(x_i)=0\)也不一定成立)。
假设我们找到了\(\bar{C}\)的特征向量\(V \ne 0\):
\]
因为\(V\)是\(\Phi(x_i),i=1,\ldots, M\)的线性组合(这个容易证明),所以,\(V\)可以由下式表示:
\]
所以:
\]
等价于(记\(\Phi = [\Phi(x_1), \ldots, \Phi(x_M)]\)):
\lambda \sum \limits_{i=1}^M \alpha_i (\Phi^T(x_i)\Phi(x_j))
&= \lambda \{ \Phi^T \Phi(x_j)\} ^T \alpha \\
& =\frac{1}{M} \sum \limits_{i=1}^M \alpha_i \Phi^T(x_i) \Phi \Phi^T \Phi(x_j) \\
& = \frac{1}{M} \{\Phi^T \Phi \Phi^T \Phi(x_j)\}^T \alpha
\end{array}
\]
对于\(j=1,\ldots, M\)均成立,其中\(\alpha = [\alpha_1, \ldots, \alpha_M]^T\)。
等价于:
\]
令\(K = \Phi^T \Phi\),那么可写作:
\]
其中\(K_{ij} = \Phi^T(x_i) \Phi(x_j)\)
所以,我们可以通过下式来求解\(\alpha\):
\]
即\(\alpha\)是\(K\)的特征向量(注意,当\(\alpha\)为特征向量的时候是一定符合\(M \lambda K \alpha = K^2\alpha\)的,反之也是的,即二者是等价的)。
假设\(\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_M\)对应\(\alpha^1, \ldots, \alpha^M\),那么相应的\(V\)也算是求出来了。
需要注意的是,\(\|\alpha\|\)往往不为1,因为我们希望\(\|V\|=1\),所以:
\]
所以\(\|\alpha\| = \frac{1}{\sqrt{\lambda}}\)
PCA当然需要求主成分,假设有一个新的样本\(x\),我们需要求:
\]
注意,我们只需要计算\(\Phi^T(x_i) \Phi(x)\)。
现在回到kernel PCA 上的关键kernel上。注意到,无论是K,还是最后计算主成分,我们都只需要计算\(\Phi^T(x)\Phi(y)\)就可以了,所以如果我们能够找到一个函数\(k(x,y)\)来替代就不必显示将\(x\)映射到\(\Phi(x)\)了,这就能够避免了\(\Phi(\cdot)\)的选择问题和计算问题。
kernel 的选择
显然,PCA的\(\lambda \ge 0\),所以我们也必须保证\(K\)为半正定矩阵,相应的核函数\(k\)称为正定核,Mercer定理有相应的构建。
也有现成的正定核:
多项式核
\]
论文中是\((x^Ty)^d\)
高斯核函数
\]
性质

论文用上面的一个例子来说明,kernel PCA可能更准确地抓住数据的结构。
kernel PCA具有普通PCA的性质,良好的逼近(从方差角度),以及拥有最多的互信息等等。并且,如果\(k(x, y) = k(x^Hy)\),那么kernel PCA还具有酉不变性。
因为普通的PCA处理的是一个\(N \times N\)的协方差矩阵,所以,至多获得\(N\)个载荷向量,而kernel PCA至多获得\(M\)个载荷向量(特征值非零)。所以,kernel PCA有望比普通PCA更加精准。
一些问题
中心化
PCA处理的是协方差矩阵,正如我们最开始所假设的,\(\sum \limits_{i=1}^{M} \Phi(x_i)=0\),即中心化。因为\(\Phi(\cdot)\)并不是线性函数,所以,即便\(\sum \limits_{i=1}^M x_i = 0\)也不能保证\(\sum \limits_{i=1}^{M} \Phi(x_i)=0\),不过有别的方法处理。
令
\tilde{K}_{ij} = \tilde{\Phi}^T(x_i) \Phi(x_j) \\
1_{M} = \{1\}_{ij}^{M \times M}
\]
可以得到:
\tilde{K}_{ij} &= \tilde{\Phi}^T(x_i) \Phi(x_j) \\
&= \big(\Phi(x_i) - \frac{1}{M}\sum \limits_{k=1}^M \Phi(x_k)\big)^T \big(\Phi(x_j) - \frac{1}{M}\sum \limits_{k=1}^M \Phi(x_k)\big) \\
&= K_{ij} - \frac{1}{M} \sum \limits_{k=1}^M K_{kj} - \frac{1}{M} \sum \limits_{k=1}^M K_{ik} + \frac{1}{M^2} \sum \limits \limits_{m,n=1}^M K_{mn} \\
&= (K - 1_MK - K1_M + 1_MK1_M)_{ij}
\end{array}
\]
于是,我们通过\(K\)可以构造出\(\tilde{K}\)。只需再求解\(\tilde{K}\tilde{\alpha} = M \lambda \tilde{\alpha}\)即可。
恢复
我们知道,根据PCA选出的载荷向量以及主成分,我们能够恢复出原数据(或者近似,如果我们只选取了部分载荷向量)。对于kernel PCA,比较困难,因为我们并没有显式构造\(\Phi(\cdot)\),也就没法显式找到\(V\),更何况,有时候我们高维空间找到\(V\)在原空间中并不存在原像。
或许, 我们可以通过:
\]
来求解,注意到,上式也只和核函数\(k(x,y)\)有关。
代码
import numpy as np
class KernelPCA:
def __init__(self, data, kernel=1, pra=3):
self.__n, self.__d = data.shape
self.__data = np.array(data, dtype=float)
self.kernel = self.kernels(kernel, pra)
self.__K = self.center()
@property
def shape(self):
return self.__n, self.__d
@property
def data(self):
return self.data
@property
def K(self):
return self.__K
@property
def alpha(self):
return self.__alpha
@property
def eigenvalue(self):
return self.__value
def kernels(self, label, pra):
"""
数据是一维的时候可能有Bug
:param label: 1:多项式;2:exp
:param pra:1: d; 2: sigma
:return: 函数 或报错
"""
if label is 1:
return lambda x, y: (x @ y) ** pra
elif label is 2:
return lambda x, y: \
np.exp(-(x-y) @ (x-y) / (2 * pra ** 2))
else:
raise TypeError("No such kernel...")
def center(self):
"""中心化"""
oldK = np.zeros((self.__n, self.__n), dtype=float)
one_n = np.ones((self.__n, self.__n), dtype=float)
for i in range(self.__n):
for j in range(i, self.__n):
x = self.__data[i]
y = self.__data[j]
oldK[i, j] = oldK[j, i] = self.kernel(x, y)
return oldK - 2 * one_n @ oldK + one_n @ oldK @ one_n
def processing(self):
"""实际上就是K的特征分解,再对alpha的大小进行一下调整"""
value, alpha = np.linalg.eig(self.__K)
index = value > 0
value = value[index]
alpha = alpha[:, index] * (1 / np.sqrt(value))
self.__alpha = alpha
self.__value = value / self.__n
def score(self, x):
"""来了一个新的样本,我们进行得分"""
k = np.zeros(self.__n)
for i in range(self.__n):
y = self.__data[i]
k[i] = self.kernel(x, y)
return k @ self.__alpha
"""
import matplotlib.pyplot as plt
x = np.linspace(-1, 1, 100)
y = x ** 2 + [np.random.randn() * 0.1 for i in range(100)]
data = np.array([x, y]).T
test = KernelPCA(data, pra=1)
test.processing()
print(test.alpha.shape)
print(test.alpha[:, 0])
"""
Nonlinear Component Analysis as a Kernel Eigenvalue Problem的更多相关文章
- 【论文笔记】Domain Adaptation via Transfer Component Analysis
论文题目:<Domain Adaptation via Transfer Component Analysis> 论文作者:Sinno Jialin Pan, Ivor W. Tsang, ...
- PCA(Principal Component Analysis)主成分分析
PCA的数学原理(非常值得阅读)!!!! PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可 ...
- Dimension reduction in principal component analysis for trees
目录 问题 重要的定义 距离 支撑树 交树 序 tree-line path 重要的性质 其它 Alfaro C A, Aydin B, Valencia C E, et al. Dimension ...
- Principal Component Analysis(PCA) algorithm summary
Principal Component Analysis(PCA) algorithm summary mean normalization(ensure every feature has sero ...
- Robust Principal Component Analysis?(PCP)
目录 引 一些微弱的假设: 问题的解决 理论 去随机 Dual Certificates(对偶保证?) Golfing Scheme 数值实验 代码 Candes E J, Li X, Ma Y, e ...
- Sparse Principal Component Analysis via Rotation and Truncation
目录 对以往一些SPCA算法复杂度的总结 Notation 论文概述 原始问题 问题的变种 算法 固定\(X\),计算\(R\) 固定\(R\),求解\(X\) (\(Z =VR^{\mathrm{T ...
- 《principal component analysis based cataract grading and classification》学习笔记
Abstract A cataract is lens opacification caused by protein denaturation which leads to a decrease i ...
- Principal Component Analysis(PCA)
Principal Component Analysis(PCA) 概念 去中心化(零均值化): 将输入的特征减去特征的均值, 相当于特征进行了平移, \[x_j - \bar x_j\] 归一化(标 ...
- scikit-learn---PCA(Principle Component Analysis)---KNN(image classifier)
摘要:PCA为非监督分类方法,常用于数据降维.为监督分类数据预处理,本例采用PCA对人脸特征提取先做降维处理,然后使用KNN算法对图片进行分类 ##1.PCA简介 设法将原来变量重新组合成一组新的互相 ...
随机推荐
- jQuery基础系列
$(document).ready(function(){ $("p").click(function(){ $(this).hide(); }); }); jQuery 入口函数 ...
- 后端MVC和前端MVVC关系详解
MVC 是后端的分层开发概念: MVVM是前端视图层的概念,主要关注于 视图层分离,也就是说:MVVM把前端的视图层,分为了 三部分 Model, View , VM ViewModel
- 从壹开始前后端分离 [ Vue2.0+.NET Core2.1] 十九║Vue基础: 样式动态绑定+生命周期
回顾 哈喽大家好,前后端分离系列文章又开始了,今天周一,还是感谢大家花时间来观看我写的博客,周末呢,没有写文章,但是也没有闲着,主要是研究了下遗留问题,看过之前文章的应该知道,之前的在AOP使用Red ...
- Python就业指导
一年一度的金三银四招聘旺季又要到了,最近有很多同学希望我能给他们一些关于python的就业指导:之前出过一期关于java的就业指导,但是并不是很完善,所以希望这期关于python的就业指导能够很全面很 ...
- go get golang.org被墙问题解决
go get golang.org被墙问题解决 今天在下载golang.org/x/image/tiff的时候出错 > go get -v golang.org/x/image/tiff Fet ...
- expect实现自动交互由浅入深
expect实现自动交互由浅入深 作为运维人员可以通过Shell可以实现简单的控制流功能,如:循环.判断等.但是对于需要交互的场合则必须通过人工来干预,有时候我们可能会需要实现和交互程序如telnet ...
- Pycharm2018永久破解的办法
Pycharm2018永久破解的具体步骤: 一.下载pycharm2018专业版 JetBrains官网:https://www.jetbrains.com/pycharm/download/#sec ...
- Python:序列的增量赋值
增量赋值运算符有 += 和 *=.+= 背后的特殊方法是 __iadd__,如果一个类没有实现 __iadd__ 方法,Python 会退一步调用 __add__ 方法.这两个方法的区别在于,__ia ...
- c#文件图片操作
系统特殊目录路径 //取得特殊文件夹的绝对路径 //桌面 Environment.GetFolderPath(Environment.SpecialFolder.Desktop); //收藏夹 Env ...
- django-restframework之缓存系统
django-restframework之缓存系统 一 前言 一 为什么需要缓存 在动态网站中,用户所有的请求,服务器都会去数据库中进行相应的增.删.查.改,渲染模块,执行业务逻辑,最后生成用户看到的 ...