BZOJ_3894_文理分科_最小割

Description

 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠
结过)
 小P所在的班级要进行文理分科。他的班级可以用一个n*m的矩阵进行
描述,每个格子代表一个同学的座位。每位同学必须从文科和理科中选择
一科。同学们在选择科目的时候会获得一个满意值。满意值按如下的方式
得到:
1.如果第i行第秒J的同学选择了文科,则他将获得art[i][j]的满意值,如
  果选择理科,将得到science[i][j]的满意值。
2.如果第i行第J列的同学选择了文科,并且他相邻(两个格子相邻当且
  仅当它们拥有一条相同的边)的同学全部选择了文科,则他会更开
  心,所以会增加same_art[i][j]的满意值。
3.如果第i行第j列的同学选择了理科,并且他相邻的同学全部选择了理
  科,则增加same_science[i]j[]的满意值。
  小P想知道,大家应该如何选择,才能使所有人的满意值之和最大。请
告诉他这个最大值。

Input

第一行为两个正整数:n,m
接下来n术m个整数,表示art[i][j];
接下来n术m个整数.表示science[i][j];
接下来n术m个整数,表示same_art[i][j];

Output

输出为一个整数,表示最大的满意值之和

Sample Input

3 4
13 2 4 13
7 13 8 12
18 17 0 5

8 13 15 4
11 3 8 11
11 18 6 5

1 2 3 4
4 2 3 2
3 1 0 4

3 2 3 2
0 2 2 1
0 2 4 4

Sample Output

152

转化为“不选则割”的最小割模型。
每个人要么学文要么学理,故S->x(a[x]),x->T(s[i])。
对于所有的组合,新建两个结点。
S->p1(sa[]),p1->x(inf),x->p2(inf),p2->T(ss[])
然后总权值减最小割为答案。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 30050
#define M 500050
#define S (n*m+1)
#define T (n*m+2)
#define p(i,j) ((i-1)*m+j)
#define inf 100000000
int head[N],to[M<<1],nxt[M<<1],cnt=1,n,m,dep[N],Q[N],l,r,flow[M<<1],sum,a[105][105],b[105][105];
int tx[]={0,1,-1,0};
int ty[]={1,0,0,-1};
inline void add(int u,int v,int f) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; flow[cnt]=f;
to[++cnt]=u; nxt[cnt]=head[v]; head[v]=cnt; flow[cnt]=0;
}
bool bfs() {
memset(dep,0,sizeof(dep));
int i; l=r=0; Q[r++]=S; dep[S]=1;
while(l<r) {
int x=Q[l++];
for(i=head[x];i;i=nxt[i]) {
if(!dep[to[i]]&&flow[i]) {
dep[to[i]]=dep[x]+1;
if(to[i]==T) return 1;
Q[r++]=to[i];
}
}
}
return 0;
}
int dfs(int x,int mf) {
// puts("fgvfiugv");
if(x==T) return mf;
int i,nf=0;
for(i=head[x];i;i=nxt[i]) {
if(dep[to[i]]==dep[x]+1&&flow[i]) {
int tmp=dfs(to[i],min(mf-nf,flow[i]));
//if(!tmp) dep[to[i]]=0;
nf+=tmp;
flow[i]-=tmp;
flow[i^1]+=tmp;
if(nf==mf) break;
}
}
return nf;
}
void dinic() {
int f;
while(bfs()) while(f=dfs(S,inf)) sum-=f;
printf("%d\n",sum);
}
int main() {
scanf("%d%d",&n,&m);
int i,j,x,k;
for(i=1;i<=n;i++) {
for(j=1;j<=m;j++) {
scanf("%d",&x);sum+=x;
add(S,p(i,j),x);
}
}
for(i=1;i<=n;i++) {
for(j=1;j<=m;j++) {
scanf("%d",&x);sum+=x;
add(p(i,j),T,x);
}
}
for(i=1;i<=n;i++) {
for(j=1;j<=m;j++) {
scanf("%d",&a[i][j]);sum+=a[i][j];
}
}
for(i=1;i<=n;i++) {
for(j=1;j<=m;j++) {
scanf("%d",&b[i][j]);sum+=b[i][j];
}
}
int tot=n*m+2;
for(i=1;i<=n;i++) {
for(j=1;j<=m;j++) {
tot+=2;
add(S,tot-1,a[i][j]);
add(tot,T,b[i][j]);
add(tot-1,p(i,j),inf);
add(p(i,j),tot,inf);
for(k=0;k<4;k++) {
int di=i+tx[k],dj=j+ty[k];
if(di>=1&&di<=n&&dj>=1&&dj<=m) {
add(tot-1,p(di,dj),inf);
add(p(di,dj),tot,inf);
}
}
}
}
dinic();
}
/*
3 4
13 2 4 13
7 13 8 12
18 17 0 5 8 13 15 4
11 3 8 11
11 18 6 5 1 2 3 4
4 2 3 2
3 1 0 4 3 2 3 2
0 2 2 1
0 2 4 4
*/

BZOJ_3894_文理分科&&BZOJ_2127_happiness_最小割的更多相关文章

  1. 【BZOJ3894】文理分科(最小割)

    [BZOJ3894]文理分科(最小割) 题面 BZOJ Description 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过) 小P所在的班级要进行文理分科.他的班级可以用一个 ...

  2. [Bzoj3894]文理分科(最小割)

    Description  文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过)  小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行描述,每个格子代表一个同学的座位.每位 ...

  3. 【bzoj3894】文理分科 网络流最小割

    原文地址:http://www.cnblogs.com/GXZlegend 题目描述 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过) 小P所在的班级要进行文理分科.他的班级可以用 ...

  4. [BZOJ 3894] 文理分科 【最小割】

    题目链接:BZOJ - 3894 题目分析 最小割模型,设定一个点与 S 相连表示选文,与 T 相连表示选理. 那么首先要加上所有可能获得的权值,然后减去最小割,即不能获得的权值. 那么对于每个点,从 ...

  5. D - 文理分科 (网络流->最小割)

    题目链接:https://cn.vjudge.net/contest/281959#problem/D 题目大意:中文题目 具体思路:我们需要求出最大的满意值,从另一方面想,我们可以求出总的满意值,然 ...

  6. bzoj 3894 文理分科【最小割+dinic】

    谁说这道和2127是双倍经验的来着完全不一样啊? 数组开小会TLE!数组开小会TLE!数组开小会TLE! 首先sum统计所有收益 对于当前点\( (i,j) \)考虑,设\( x=(i-1)*m+j ...

  7. BZOJ3894文理分科——最小割

    题目描述  文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过)  小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行 描述,每个格子代表一个同学的座位.每位同学必须从 ...

  8. P4313 文理分科 最小割

    $ \color{#0066ff}{ 题目描述 }$ 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过) 小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行描述,每个格 ...

  9. [bzoj3894]文理分科_网络流_最小割

    文理分科 bzoj-3894 题目大意:题目链接. 注释:略. 想法: 这种题也是一种套路. 我们新建一个点表示收益点. 然后把所有的收益都加一起,求最小割表示代价即可. Code: #include ...

随机推荐

  1. String内存分配

    Java 把内存划分成两种:一种是栈内存,另一种是堆内存.在函数中定义的一些基本类型的变量和对象的引用变量都是在函数的 栈内存中分配,当在一段代码块定义一个变量时,Java 就在栈中为这个变量分配内存 ...

  2. TypeError: can't compare offset-naive and offset-aware datetimes bugfix

    参考:https://docs.djangoproject.com/en/1.8/topics/i18n/timezones/#naive-and-aware-datetime-objects 起因: ...

  3. ubuntu16 关于root的使用

    ubuntu新版本安全性提升了很多,root用户的权限不像centos那样获取root的方式,直接su即可.ubuntu需要手动配置root账户以及密码. 配置方式: sudo passwd root ...

  4. remove duplicate of the sorted array

    description: Given a sorted array, remove the duplicates in place such that each element appear only ...

  5. 转载《分布式任务调度平台XXL-JOB》

    <分布式任务调度平台XXL-JOB>       博文转自 https://www.cnblogs.com/xuxueli/p/5021979.html 一.简介 1.1 概述 XXL-J ...

  6. 「SQL归纳」树形结构表的存储与查询功能的实现——通过路径方法(非递归)

    一.树形结构例子分析: 以360问答页面为例:http://wenda.so.com/c/ 我们通过观察URL,可以明确该页面的数据以树形结构存储,下面三块模块分别为: ①根节点 ②根节点的第一层子节 ...

  7. Python_字符串的大小写变换

    ''' lower().upper().capitalize().title().swapcase() 这几个方法分别用来将字符串转换为小写.大写字符串.将字符串首字母变为大写.将每个首字母变为大写以 ...

  8. Visual Studio 201~ Code 格式检查

    前言 好的代码格式,有利于阅读和查错,慢慢的有利于养成良好的编码习惯,也可以帮我们找出一些低级错误. StyleCop 在Nuget上搜索stylecop,选择MSBuild的那个版本,安装. 手动编 ...

  9. HTTP认证方式详解

    HTTP请求报头: Authorization HTTP响应报头: WWW-Authenticate   HTTP认证 基于 质询 /回应( challenge/response)的认证模式.   ◆ ...

  10. Go笔记之一:工程项目结构的注意事项

    Go笔记之一:工程项目结构的注意事项 对 Go 项目目录的理解 (Windows平台为例) 刚安装完的 Go 需要设定环境变量,最关键的环境变量有三个,GOROOT.GOPATH和GOBIN.GORO ...