BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包
BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包
题意:
硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买s
i的价值的东西。请问每次有多少种付款方法。
分析:
假设没有di的限制,先跑一遍完全背包
容斥,用总方案数减去有一种硬币数目不合法的方案数加上有两种硬币不合法的方案数......
怎么求这个方案数呢?
我们发现如果第i种硬币数目不合法,那它一定拿了至少(di+1)个,方案数就是f[n-(di+1)*ci]
代码:
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define LL long long
#define N 100000
LL c[5], tot, d[5], s;
LL f[N+10];
int main(){
scanf("%lld%lld%lld%lld%lld", &c[1], &c[2], &c[3], &c[4], &tot);
int i,j;
f[0] = 1;
for(i = 1;i <= 4 ;i++) {
for(j = c[i];j <= N;j++) {
f[j] += f[j - c[i]];
}
}
while(tot--) {
scanf("%lld%lld%lld%lld%lld", &d[1], &d[2], &d[3], &d[4], &s);
LL ans = f[s];
LL g1 = (d[1] + 1) * c[1];
LL g2 = (d[2] + 1) * c[2];
LL g3 = (d[3] + 1) * c[3];
LL g4 = (d[4] + 1) * c[4];
if(s - g1 >= 0) ans -= f[s - g1];
if(s - g2 >= 0) ans -= f[s - g2];
if(s - g3 >= 0) ans -= f[s - g3];
if(s - g4 >= 0) ans -= f[s - g4];
if(s - g1 - g2 >= 0) ans += f[s - g1 - g2];
if(s - g1 - g3 >= 0) ans += f[s - g1 - g3];
if(s - g1 - g4 >= 0) ans += f[s - g1 - g4];
if(s - g2 - g3 >= 0) ans += f[s - g2 - g3];
if(s - g2 - g4 >= 0) ans += f[s - g2 - g4];
if(s - g3 - g4 >= 0) ans += f[s - g3 - g4];
if(s - g1 - g2 - g3 >= 0) ans -= f[s - g1 - g2 - g3];
if(s - g1 - g2 - g4 >= 0) ans -= f[s - g1 - g2 - g4];
if(s - g1 - g3 - g4 >= 0) ans -= f[s - g1 - g3 - g4];
if(s - g2 - g3 - g4 >= 0) ans -= f[s - g2 - g3 - g4];
if(s - g1 - g2 - g3 - g4 >= 0) ans += f[s - g1 - g2 - g3 - g4];
printf("%lld\n",ans);
}
}
BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包的更多相关文章
- P1450 [HAOI2008]硬币购物(完全背包+容斥)
P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$ ...
- BZOJ1042 [HAOI2008]硬币购物 【完全背包 + 容斥】
1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2924 Solved: 1802 [Submit][St ...
- BZOJ 1042: [HAOI2008]硬币购物 容斥+背包
1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...
- bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理
题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1706 Solved: 985[Submit][ ...
- BZOJ 1042:[HAOI2008]硬币购物(容斥原理+DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1042 [题目大意] 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4. 某人去 ...
- 2019.02.09 bzoj1042: [HAOI2008]硬币购物(完全背包+容斥原理)
传送门 题意简述:有四种面值的硬币,现在qqq次询问(q≤1000)(q\le1000)(q≤1000),每次给出四种硬币的使用上限问最后刚好凑出sss块钱的方案数(s≤100000)(s\le100 ...
- BZOJ 1042: [HAOI2008]硬币购物(容斥原理)
http://www.lydsy.com/JudgeOnline/problem.php?id=1042 题意: 思路: 如果不考虑硬币个数的话,这就是一道完全背包的题目. 直接求的话行不通,于是这里 ...
- bzoj 1042: [HAOI2008]硬币购物【容斥原理+dp】
当然是容斥啦. 用dp预处理出\( f[i] \),表示在\( i \)价格时不考虑限制的方案数,转移方程是\( f[i]+=f[i-c[j]] \),用状压枚举不满足的状态容斥一下即可. #incl ...
- Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp
1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1747 Solved: 1015[Submit][Stat ...
随机推荐
- 解决 RabbitMQ 集群 Channel shutdown: connection error 错误(HAProxy 负载均衡)
相关文章:搭建 RabbitMQ Server 高可用集群 具体错误信息: 2018-05-04 11:21:48.116 ERROR 60848 --- [.168.0.202:8001] o.s. ...
- js获取Session的值
纯htm页面必须采用AJAX了, ASP页面:var manager='<%=session("manager")%>', ASPX页面:var manager='&l ...
- JAVA代码设置selector不同状态下的背景颜色
代码实现Shape 代码实现Selector StateListDrawable与GradientDrawable 的运用 在Android开发中,我们时常会用到自定义drawable样式,在draw ...
- Mac下面解决PYTHONPATH配置的方法
问题起因:MacPort安装的Python包在/opt目录里面,和系统安装的python包不在一起,由于Mac下面编译安装无止境的找不到问题,虽然MacPort解决了这个问题,但是它安装的东西,得自己 ...
- Microsoft源代码注释语言(SAL)提供设置批注
Microsoft源代码注释语言(SAL)提供设置批注可以使用描述的功能如何使用其参数,它对其假设并确保它使其在完成. 批注可标头文件 <sal.h>定义. Visual Studio C ...
- Ocelot中文文档-Raft(实验功能不能用于生产环境)
Ocelot最近整合了Rafty,这是我在去年一直研究的Raft的一个实现. 这个项目实验性非常强,所以在我认为它没问题之前,请不要在生产环境中使用Ocelot的这个功能. Raft是一种分布式一致性 ...
- 利用redis自制幻灯片弹幕
前段时间赶项目,忙结婚,各大技术平台都没时间上,不过还是抽出点时间为自己的婚礼做了一点小玩具,今天我就来给大家分享一下. 先来看一下效果 这个项目是基于微信个人订阅号的,订阅号的开发在此我就不再赘述了 ...
- PHP采用Cookie实现 购物车
先来看一下逻辑分析图:
- python爬虫入门(一)urllib和urllib2
爬虫简介 什么是爬虫? 爬虫:就是抓取网页数据的程序. HTTP和HTTPS HTTP协议(HyperText Transfer Protocol,超文本传输协议):是一种发布和接收 HTML页面的 ...
- Linux的一些问题
2. VMware11安装deepin15 实现文件共享和屏幕分辨率放大 要点:安装 open-vm-tools open-vm-tools-desktop open-vm-tools-dkms 这 ...