BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]
1485: [HNOI2009]有趣的数列
Description
我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件:
(1)它是从1到2n共2n个整数的一个排列{ai};
(2)所有的奇数项满足a1<a3<…<a2n-1,所有的偶数项满足a2<a4<…<a2n;
(3)任意相邻的两项a2i-1与a2i(1≤i≤n)满足奇数项小于偶数项,即:a2i-1<a2i。
现在的任务是:对于给定的n,请求出有多少个不同的长度为2n的有趣的数列。因为最后的答案可能很大,所以只要求输出答案 mod P的值。
Input
输入文件只包含用空格隔开的两个整数n和P。输入数据保证,50%的数据满足n≤1000,100%的数据满足n≤1000000且P≤1000000000。
Output
仅含一个整数,表示不同的长度为2n的有趣的数列个数mod P的值。
DP方程的形式对本题影响重大!
发现奇数位置对应唯一的偶数位置,且第i个奇数位置最大$2i-1$,所以只考虑奇数位置,写一个DP:
$f[i][j] $表示前i个奇数位置最大j的方案数
然后只能优化到$O(n^2)$
找啊找从beiyu那里发现另一种方程:
$f[i][j]$ 前i个数,j个放在奇数位置的方案数
限制条件$\frac{i}{2} \le j \le i$并且最终奇数位置放了n个
这不就是Catalan数的走格子模型吗?
并且这个DP方程就是做那道走格子题目最原始的方程,放在奇数是向左走
这些数字是从小到大放进那些位置里,(这样避免了考虑大小影响),并且每一时刻放在奇数位置的个数一定大于等于放在偶数位置的个数,这样就和原始定义里的$+1\quad -1$对应起来啦!
重要的地方在于想到把数字从小到大放进去而不是从左到右考虑每个位置
然后本题没法求逆元,需要质因子分解,这种n小的情况直接保存lp[]就行了,超快
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=2e6+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,MOD;
bool notp[N];
int p[N],lp[N];
void sieve(int n){
for(int i=;i<=n;i++){
if(!notp[i]) p[++p[]]=i,lp[i]=p[];
for(int j=;j<=p[]&&i*p[j]<=n;j++){
notp[i*p[j]]=;
lp[i*p[j]]=j;
if(i%p[j]==) break;
}
}
}
int e[N];
void add(int x,int d){
while(x!=){
e[lp[x]]+=d;
x/=p[lp[x]];
}
}
void solve(){
ll ans=;
for(int i=*n;i>=n+;i--) add(i,);
for(int i=;i<=n;i++) add(i,-);
add(n+,-);
for(int j=;j<=p[];j++) for(;e[j];e[j]--) ans=ans*p[j]%MOD;
printf("%lld",ans);
}
int main(){
freopen("in","r",stdin);
n=read();MOD=read();
sieve(n<<);
solve();
}
BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]的更多相关文章
- BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )
打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...
- bzoj 1485 [HNOI2009]有趣的数列 卡特兰数
把排好序的序列看成一对对括号,要把他们往原数列里塞,所以就是括号序合法方案数 即为卡特兰数 f(n)=Cn2nn+1 求的时候为避免除法,可以O(n)计算每个素数出现次数,最后乘起来,打完之后发现其实 ...
- bzoj1485: [HNOI2009]有趣的数列(Catalan数)
1485: [HNOI2009]有趣的数列 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2105 Solved: 1117[Submit][Stat ...
- BZOJ1485: [HNOI2009]有趣的数列(Catalan数,质因数分解求组合数)
题意 挺简洁的. 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…<a ...
- BZOJ 1485: [HNOI2009]有趣的数列
Description 求长度为 \(2n\) 的序列.要求 1. \(a_1<a_3<a_5<...<a_{2n-1}\) . 2. \(a_2<a_4<a_6& ...
- [HNOI2009]有趣的数列 卡特兰数
题面:[HNOI2009]有趣的数列 题解: 观察到题目其实就是要求从长为2n的序列中选n个放在集合a,剩下的放在集合b,使得集合a和集合b中可以一一对应的使a中的元素小于b. 2种想法(实质上是一样 ...
- 【BZOJ】1485: [HNOI2009]有趣的数列
[算法]Catalan数 [题解] 学了卡特兰数就会啦>_<! 因为奇偶各自递增,所以确定了奇偶各自的数字后排列唯一. 那么就是给2n个数分奇偶了,是不是有点像入栈出栈序呢. 将做偶数标为 ...
- [HNOI2009] 有趣的数列——卡特兰数与杨表
[HNOI 2009] 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
- BZOJ1485:[HNOI2009]有趣的数列(卡特兰数)
Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
随机推荐
- 关于Vue的各个UI框架(elementUI、mint-ui、VUX)
elementUI 官网:http://element.eleme.io/ 使用步骤: 1.安装完vue-cli后,再安装 element-ui 命令行:npm i element-ui -D 相当于 ...
- ArrayList 源码详细分析
1.概述 ArrayList 是一种变长的集合类,基于定长数组实现.ArrayList 允许空值和重复元素,当往 ArrayList 中添加的元素数量大于其底层数组容量时,其会通过扩容机制重新生成一个 ...
- Struts2中Action接收参数的方法主要有以下三种:
Struts2中Action接收参数的方法主要有以下三种: 1.使用Action的属性接收参数(最原始的方式): a.定义:在Action类中定义属性,创建get和set方法: b.接 ...
- mybatis_helloworld(2)_源码
摘录自:http://blog.csdn.net/y172158950/article/details/16982123 在helloworld(1)中,分析了insert一条数据的流程,现在分析下源 ...
- mybatis-databaseIdProvider多数据库支持
<select id="selectPerson" parameterType="int" parameterMap="deprecated&q ...
- Django_项目初始化
如何初始Django运行环境? 1. 安装python 2. 创建Django项目专用的虚拟环境 http://www.cnblogs.com/2bjiujiu/p/7365876.html 3.进入 ...
- lambda高级进阶--返回函数
在函数式编程语言中,函数是一级公民.如同你可以将数字传递给方法,也可以让方法产生数字一样,函数不仅可以作为参数,也可以作为返回值.这听起来好像有点抽象,在JAVA编码中,我们好像也很少这样子写到,但是 ...
- 无废话XML--XML细节
今天开始研究xml,其实在实际的开发中,我们参与到真正的XML开发并不是很多,最多写一个配置,但是我还是觉得很有必要把XML的知识整理一遍.作为基本的2种的数据交互载体(还有一个是json),基本的X ...
- 【Java框架型项目从入门到装逼】第十四节 查询用户列表展现到页面
这一节,我们来实现一下用户列表搜索,最终的效果如下: 这边我们要使用easyUI给我们提供的datagrid组件. HTML结构如下 <!-- 数据列表 --> <table id= ...
- Java并发系列[2]----AbstractQueuedSynchronizer源码分析之独占模式
在上一篇<Java并发系列[1]----AbstractQueuedSynchronizer源码分析之概要分析>中我们介绍了AbstractQueuedSynchronizer基本的一些概 ...