Jordan Lecture Note-4: Linear & Ridge Regression
对于$n$个数据$\{(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)\},x_i\in\mathbb{R}^d,y_i\in\mathbb{R}$。我们采用以下矩阵来记上述数据:
\begin{equation}\mathbf{X}=\left[\begin{array}& x_1^\prime\\ x_2^\prime\\\vdots\\ x_n^\prime\end{array}\right]\quad y=\left(\begin{array}&y_1\\y_2\\\vdots\\y_n\end{array}\right)\end{equation}
我们想要拟合出$y=\mathbf{X}\beta+\epsilon$,其中$\epsilon$为服从均值为0,方差为$\sigma^2$的高斯分布。
一、 最大似然估计
$\epsilon$的密度函数:
$$f(\epsilon)=\frac{1}{\sqrt{2\pi}\sigma}exp\{-\frac{\epsilon^2}{\sigma^2}\}=\frac{1}{\sqrt{2\pi}\sigma}exp\{-\frac{\|y-\mathbf{X}\beta\|^2}{\sigma^2}\}$$
似然函数:
$$L(\beta)=\prod_{i=1}^n\frac{1}{\sqrt{2\pi}\sigma}exp\{-\frac{(y_i-x_i^\prime\beta)^\prime(y_i-x_i^\prime\beta)}{\sigma^2}\}$$
log-似然函数:
$$l(\beta)=n\mathop{log}\frac{1}{\sqrt{2\pi}\sigma}-\sum_{i=1}^n\frac{(y_i-x_i^\prime\beta)^\prime(y_i-x_i^\prime\beta)}{\sigma^2}$$
令$\frac{dl(\beta)}{d\beta}=0$ $\Longrightarrow$ $(\mathbf{X}^\prime\mathbf{X})\hat{\beta}_{ML}=\mathbf{X}^\prime y$
其中$\mathbf{X}^\prime\mathbf{X}$和$\mathbf{X}^\prime y$是充分统计量。
充分统计量:直观来讲应该能够将样本中所有包含的关于未知参数的信息全部包括起来,这样的统计量就是充分统计量。具体的说,在统计量$T$给定后,样本的条件分布已经不在依赖于参数$\theta$。数学定义:设有一个分布族$\mathcal{F}=\{F\},(x_1,x_2,\cdots,x_n)$是从某总体$F\in\mathcal{F}$中抽取的一个样本,$T=T(x_1,x_2,\cdots,x_n)$为一个(一维或多维)统计量,如果当给定$T=t$下, 样本$(x_1,x_2,\cdots,x_n)$的条件分布于总体分布$F$无关,则称$T$为此分布族的充分统计量(sufficient statistic)。
假设$(\mathbf{X}^\prime\mathbf{X})^{-1}$存在,则
\begin{align*}\hat{\beta}_{ML}&=(\mathbf{X}^\prime\mathbf{X})^{-1}\mathbf{X}^\prime y\\&=\mathbf{X}^\prime\mathbf{X}(\mathbf{X}^\prime\mathbf{X})^{-2}y\\&=\mathbf{X}^\prime\alpha\end{align*}
其中$\alpha=\mathbf{X}(\mathbf{X}^\prime\mathbf{X})^{-2}y$。最后的预测模型:$y=x\hat{\beta}_{ML}=x\mathbf{X}^\prime\alpha$
二、最小二乘法
原则:使拟合出来的直线到各点的距离之和最小。其模型如下:
\begin{equation}\mathop{\min}\quad \sum_{i=1}^n(y_i-x_i^\prime\beta)^2\label{equ:leastSquare}\end{equation}
对式子\ref{equ:leastSquare}求导,并令其为0可得:$\mathbf{X}^\prime\mathbf{X}\beta=\mathbf{X}^\prime y$,同样假设$\mathbf{X}^\prime\mathbf{X}$可逆,故$\hat{\beta}_{LS}=(\mathbf{X}^\prime\mathbf{X})^{-1}\mathbf{X}^\prime y$。
三、岭回归(Ridge regression)
当自变量之间存在多重相关性的时候,矩阵$\mathbf{X}^\prime\mathbf{X}$并不一定可逆,或者$|\mathbf{X}^\prime\mathbf{X}|$非常小,导致最小二乘法回归出来的系数会产生过拟合现象。此时可以给最小二乘法加入二次的penalty,得到岭回归。
1)从最大似然函数加上penalized $-\lambda\|\beta\|^2$来看。
其中$\epsilon$的密度函数:
$$f(\epsilon)=\frac{1}{\sqrt{2\pi}\sigma}exp\{-\frac{\epsilon^2+\lambda\|\beta\|^2}{2\sigma^2}\}=\frac{1}{\sqrt{2\pi}\sigma}exp\{-\frac{(y-x^\prime\beta)^2+\lambda\beta^\prime\beta}{2\sigma^2}\}$$
似然函数:
$$L(\theta)=\prod_{i=1}^n\frac{1}{\sqrt{2\pi}\sigma}exp\{-\frac{(y_i-x_i^\prime\beta)^2+\lambda\beta^\prime\beta}{2\sigma^2}\}$$
log-似然函数:
$$l(\theta)=n\mathop{log}\frac{1}{\sqrt{2\pi}\sigma}-\sum_{i=1}^n\frac{(y_i-x_i^\prime\beta)^2+\lambda\beta^\prime\beta}{2\sigma^2}$$
对log-似然函数求导得:
$$\frac{dl(\theta)}{d\theta}=-\mathbf{X}^\prime y+\mathbf{X}^\prime\mathbf{X}\beta+\lambda\beta=0 \Longrightarrow \mathbf{X}^\prime y=(\mathbf{X}^\prime\mathbf{X}+\lambda\mathbf{I})\hat{\beta_{ML}}$$
由于矩阵$(\mathbf{X}^\prime \mathbf{X}+\lambda\mathbf{I})$必定可逆,故:
$$\hat{\beta_{ML}}=(\mathbf{X}^\prime \mathbf{X}+\lambda\mathbf{I})^{-1}\mathbf{X}^\prime y$$
2)从贝叶斯角度
假设待考察的量遵循某概率分布,且根据这些概率及观察到的数据进行推断,以作出最优的决策。
贝叶斯公式:$\mathbb{P}(h|D)=\frac{\mathbb{P}(h)\mathbb{P}(D|h)}{\mathbb{P}(D)}$.
最大后验概率(Maximum a Posteriori Probability,MAP):
$$h_{MAP}=\mathop{argmin}_{h\in H}\mathbb{P}(h|D)=\mathop{argmin}_{h\in H}\frac{\mathbb{P}(h)\mathbb{P}(D|h)}{\mathbb{P}(D)}=\mathop{argmin}_{h\in H}\mathbb{P}(h)\mathbb{P}(D|h)$$
假设$\beta$服从先验分布$\beta\sim N(0,\lambda^{-1})$,则
\begin{align*}\mathop{\max}_{h\in H}\mathbb{P}(h|D)&=\frac{1}{\sqrt{2\pi}\sigma}exp\{-\frac{(y-\mathbf{X}\beta)^\prime(y-\mathbf{X}\beta)}{2\sigma^2}\}\frac{\sqrt{\lambda}}{\sqrt{2\pi}}exp\{-\frac{\beta^\prime\beta}{\frac{2}{\lambda}}\}\\ &=\frac{\sqrt{\lambda}}{2\pi\sigma}exp\{-\frac{(y-\mathbf{X}\beta)^\prime(y-\mathbf{X}\beta)}{2\sigma^2}-\frac{\lambda\beta^\prime\beta}{2}\}\end{align*}
$$\Longrightarrow\mathop{\min}\frac{(y-\mathbf{X}\beta)^\prime(y-\mathbf{X}\beta)}{2\sigma^2}+\frac{\lambda}{2}\beta^\prime\beta$$
令导数等于0$\Longrightarrow \frac{-\mathbf{X}^\prime(y-\mathbf{X}\beta)}{\sigma^2}+\lambda\beta=0$
$$\Longrightarrow (\mathbf{X}^\prime\mathbf{X}+\sigma^2\lambda\mathbf{I})\hat{\beta_{MAP}}=\mathbf{X}^\prime y$$
$$\Longrightarrow \sigma^2\lambda\hat{\beta_{MAP}}=\mathbf{X}^\prime y-\mathbf{X}^\prime\mathbf{X}\hat{\beta_{MAP}}=\mathbf{X}^\prime(y-\mathbf{X}\hat{\beta_{MAP}})$$ $$\Longrightarrow \hat{\beta_{MAP}}=(\sigma^2\lambda)^{-1}\mathbf{X}^\prime(y-\mathbf{X}\hat{\beta_{MAP}})\triangleq\mathbf{X}^\prime\alpha$$
其中$\alpha = (\sigma^2\lambda)^{-1}(y-\mathbf{X}\hat{\beta_{MAP}})$。
由$\sigma^2\lambda\alpha = y-\mathbf{X}\hat{\beta_{MAP}}=y-\mathbf{X}\mathbf{X}^\prime\alpha$
$$\Longrightarrow (\sigma^2\lambda+\mathbf{X}\mathbf{X}^\prime)\alpha=y$$
$$\Longrightarrow \alpha=(\mathbf{X}\mathbf{X}^\prime+\sigma^2\lambda)^{-1}y=(\mathbf{K}+\lambda\sigma^2)^{-1}y$$
故我们只需要知道矩阵$\mathbf{K}$即可计算出$\alpha$和$\beta$值。当我们将上述矩阵$\mathbf{K}$替换成kernel矩阵,则可在更高维的空间进行回归,而且我们并不需要去关心这个映射的具体形式。
Jordan Lecture Note-4: Linear & Ridge Regression的更多相关文章
- Ridge Regression and Ridge Regression Kernel
Ridge Regression and Ridge Regression Kernel Reference: 1. scikit-learn linear_model ridge regressio ...
- 【机器学习】Linear least squares, Lasso,ridge regression有何本质区别?
Linear least squares, Lasso,ridge regression有何本质区别? Linear least squares, Lasso,ridge regression有何本质 ...
- [Scikit-learn] 1.1 Generalized Linear Models - Bayesian Ridge Regression
1.1.10. Bayesian Ridge Regression 首先了解一些背景知识:from: https://www.r-bloggers.com/the-bayesian-approach- ...
- Jordan Lecture Note-1: Introduction
Jordan Lecture Note-1: Introduction 第一部分要整理的是Jordan的讲义,这份讲义是我刚进实验室时我们老师给我的第一个任务,要求我把讲义上的知识扩充出去,然后每周都 ...
- support vector regression与 kernel ridge regression
前一篇,我们将SVM与logistic regression联系起来,这一次我们将SVM与ridge regression(之前的linear regression)联系起来. (一)kernel r ...
- How and when: ridge regression with glmnet
@drsimonj here to show you how to conduct ridge regression (linear regression with L2 regularization ...
- ISLR系列:(4.2)模型选择 Ridge Regression & the Lasso
Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applicat ...
- 再谈Lasso回归 | elastic net | Ridge Regression
前文:Lasso linear model实例 | Proliferation index | 评估单细胞的增殖指数 参考:LASSO回歸在生物醫學資料中的簡單實例 - 生信技能树 Linear le ...
- 线性回归——lasso回归和岭回归(ridge regression)
目录 线性回归--最小二乘 Lasso回归和岭回归 为什么 lasso 更容易使部分权重变为 0 而 ridge 不行? References 线性回归很简单,用线性函数拟合数据,用 mean squ ...
随机推荐
- c语言中静态区,栈,堆的理解
对于程序员,一般来说,我们可以简单的理解为内存分为三个部分:静态区,栈,堆. 很多书没有把把堆和栈解释清楚,导致初学者总是分不清楚. 其实堆栈就是栈,而不是堆. 堆的英文是heap:栈的英文是stac ...
- (三)学习MVC之密码加密及用户登录
1.密码加密采用SHA256 算法,此类的唯一实现是 SHA256Managed.在Common/Text.cs里添加Sha256方法: public static string Sha256(str ...
- WCF配置文件详解(一)
<?xml version="1.0" encoding="utf-8" ?><configuration> <!-- &l ...
- J2EE的若干问题
1.问题:jsp中out.println页面显示不出换行效果.例如: out.println("唱歌"); out.println("跳舞"); 以上代码的结果 ...
- JMX学习一
JMX 即 Java Management Extensions Java管理扩展MBean 即 managed beans 被管 ...
- Linux(ubuntu)下安装JDK、Tomcat
一.安装jdk 1)首先以root用户登录进去,在根目录下建立opt的目录,我们将下载的东西都放到该目录下去. 2)下载j2sdk ,如jdk-6u31-linux-i586.bin 下载地址如下ht ...
- 【JMeter】JMeter完成一个MySql压力测试
jmeter也可以用来做数据库的压力测试,并且兼容各种数据库类型,只需要更改对应的数据库驱动类和url.以下为整理到的数据库驱动类对应url.并且给出一个mysql数据库select的简单应用.如下: ...
- Action 操作
当鼠标移动到图片文件夹的时候,将有一些button显示 当鼠标移开这个文件夹,那些button隐藏了起来 display属性的变化 1.可以使用Js改变属性来操作 暂未验证,待时间. 2.可以使用Ac ...
- BestCoder Round #68 (div.2) 1002 tree
题意:给你一个图,每条边权值0或1,问每个点周围最近的点有多少个? 思路:并查集找权值为0的点构成的连通块. #include<stdio.h> #include<string.h& ...
- nyoj 16 矩形嵌套
矩形嵌套 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a& ...