[再寄小读者之数学篇](2014-05-28 Ladyzhenskaya 不等式)
$$\bex f\in C_c^\infty(\bbR^2)\ra \sen{f}_{L^4}\leq \sqrt{2} \sen{f}_{L^2}^{1/2} \sen{\p_1f}_{L^2}^{1/4} \sen{\p_2f}_{L^2}^{1/4}, \eex$$ $$\bex f\in C_c^\infty(\bbR^3)\ra \sen{f}_{L^4}\leq 2^{3/4} \sen{f}_{L^2}^{1/4} \sen{\p_1f}_{L^2}^{1/4} \sen{\p_2f}_{L^2}^{1/4} \sen{\p_3f}_{L^2}^{1/4}. \eex$$
[再寄小读者之数学篇](2014-05-28 Ladyzhenskaya 不等式)的更多相关文章
- [再寄小读者之数学篇](2014-10-08 乘积型 Sobolev 不等式)
$$\bex n\geq 2, 1\leq p<n\ra \sen{f}_{L^\frac{np}{n-p}(\bbR^n)} \leq C\prod_{k=1}^n \sen{\p_k f}_ ...
- [再寄小读者之数学篇](2014-06-20 求极限---Jordan 不等式的应用)
证明: 当 $\lm<1$ 时, $\dps{\lim_{R\to+\infty} R^\lm\int_0^{\pi/2} e^{-R\sin\tt}\rd \tt=0}$. 证明: 由 $$\ ...
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
随机推荐
- docker容器日志收集方案(方案一 filebeat+本地日志收集)
filebeat不用多说就是扫描本地磁盘日志文件,读取文件内容然后远程传输. docker容器日志默认记录方式为 json-file 就是将日志以json格式记录在磁盘上 格式如下: { " ...
- 为什么 npm 要为每个项目单独安装一遍 node_modules?
nodejs中package.json中的依赖必须每个项目都有自己的node_modules文件夹,而无法在多个项目之间共用一套node_modules(像Java中的Maven那样). 依赖管理是每 ...
- Jenkins + Ansible + Gitlab之ansible篇
Ansible介绍 什么是Ansible? Ansible是一个开源部署工具 开发语言:Python 特点:SSH协议通信,全平台,无需要编译,模块化部署管理 作用:推送Playbook进行远程节点快 ...
- Spring Security(三十五):Part III. Testing
This section describes the testing support provided by Spring Security. 本节介绍Spring Security提供的测试支持. ...
- Kafka简介、基本原理、执行流程与使用场景
一.简介 Apache Kafka是分布式发布-订阅消息系统,在 kafka官网上对 kafka 的定义:一个分布式发布-订阅消息传递系统. 它最初由LinkedIn公司开发,Linkedin于201 ...
- ServerSocketChannel、SocketChannel、Selector等概念04
java.nio包中的主要类ServerSocketChannel:ServerSocket的替代类,支持阻塞通信与非阻塞通信.SocketChannel:Socket的替代类,支持阻塞通信与非阻塞通 ...
- Django之自带的认证系统 auth模块
01-Django自带的用户认证 我们在开发一个网站的时候,无可避免的需要设计实现网站的用户系统.此时我们需要实现包括用户注册.用户登录.用户认证.注销.修改密码等功能,这还真是个麻烦的事情呢. Dj ...
- H5网页后在返回到微信公众平台自定义菜单
<p class="success">订阅成功!</p> <div class="btn" @click="finish ...
- Static Sushi AtCoder - 4118 (技巧枚举)
Problem Statement "Teishi-zushi", a Japanese restaurant, is a plain restaurant with only o ...
- 远程连接腾讯云服务器MySQL数据库
1.添加腾讯云安全组规则的MySQL 3306端口 将所有端口打开,至少打开3306,不在赘述. 2.打开更改MySQL配置文件 打开配置文件 vi /etc/mysql/mysql.conf.d/m ...