本节主要用一个例子来讲述一下基本的tensorflow用法。

在这个例子中,我们首先伪造一些线性数据点,其实这些数据中本身就隐藏了一些规律,但我们假装不知道是什么规律,然后想通过神经网络来揭示这个规律。

伪造数据

import numpy as np
# 创建100个随机数
x_data = np.random.rand(100).astype(np.float32)
# 创建最终要模拟的线性公式
y_data = x_data * 0.1 + 0.3

创建模型

在伪造数据之后,我们当作不知道这些数据中蕴含的规律,我们只看到有一堆(x, y)的数据,但其中是什么规律我们不知道,但想通过神经网络的方式来揭示其中的规律。

我们觉得这个规律是线性规律,因此需要有权重值和偏置值,并且先随便设置一下其初始值:

import tensorflow as tf

# tensorflow中的变量系数,1维的初始化为从-1到1之间的一个随机数
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
# 偏置,其实就是线性方程中的截距值,1维数据,初始化为0
biases = tf.Variable(tf.zeros([1])) # 在tensorflow中就是根据看到的数值,通过逼近的方式来寻找出数值的规律,最终会把这里的Weights值和biases值设置成接近原始数据中的参数值。
y = Weights * x_data + biases # 计算损失值为预测值和实际值之差平方和的平均值,损失值越小就表示越接近实际值
loss = tf.reduce_mean(tf.square(y - y_data)) # 神经网络要做的就是通过不停地迭代使这个损失值越来越小,而计算越来越小的方法是通过梯度下降算法来实现的
optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss)

上面创建了基本的模型,然后需要开始要启动这个模型了,在启动之前,由于我们创建了几个变量,但只是通知TensorFlow说我们拥有这些变量值,但还未进行实际的赋值,要进行实际的赋值,需要通过:

# 初始化所有变量
init = tf.global_variables_initializer()
sess = tf.Session()
# 激活初始化值
sess.run(init)

不停拟合数据

我们可以通过不停给模型数据,让这个模型逐步降低损失值来达到最能拟合输入值的系数:

for step in range(200):
sess.run(train)
# 每隔20步打印一下模拟出来的权重值和偏置值
if (step % 20 == 0):
print(step, sess.run(Weights), sess.run(biases))

输出为:

0 [ 0.3676317] [ 0.21848023]
20 [ 0.16707394] [ 0.26867095]
40 [ 0.11792699] [ 0.29162663]
60 [ 0.10479139] [ 0.29776204]
80 [ 0.1012806] [ 0.29940188]
100 [ 0.10034226] [ 0.29984015]
120 [ 0.10009148] [ 0.29995728]
140 [ 0.10002445] [ 0.2999886]
160 [ 0.10000654] [ 0.29999697]
180 [ 0.10000175] [ 0.29999918]

从输出结果上来看权重值比较接近于我们原先进行伪造的系数值0.1,而偏置值也比较接近我们伪造的截距值0.3,看来神经网络很好地从一堆数据中揭示了我们预先设置好的规律值。

完整的代码为:

import tensorflow as tf
import numpy as np
# 创建100个随机数
x_data = np.random.rand(100).astype(np.float32)
# 创建最终要模拟的线性公式
y_data = x_data * 0.1 + 0.3 # tensorflow中的变量系数,1维的初始化为从-1到1之间的一个随机数
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
# 偏置,其实就是线性方程中的截距值,1维数据,初始化为0
biases = tf.Variable(tf.zeros([1])) # 在tensorflow中就是根据看到的数值,通过逼近的方式来寻找出数值的规律,最终会把这里的Weights值和biases值设置成接近原始数据中的参数值。
y = Weights * x_data + biases # 计算损失值为预测值和实际值之差平方和的平均值,损失值越小就表示越接近实际值
loss = tf.reduce_mean(tf.square(y - y_data)) # 神经网络要做的就是通过不停地迭代使这个损失值越来越小,而计算越来越小的方法是通过梯度下降算法来实现的
optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) # 初始化所有变量
init = tf.global_variables_initializer()
sess = tf.Session()
# 激活初始化值
sess.run(init) for step in range(200):
sess.run(train)
# 每隔20步打印一下模拟出来的权重值和偏置值
if (step % 20 == 0):
print(step, sess.run(Weights), sess.run(biases))

tensorflow例子-【老鱼学tensorflow】的更多相关文章

  1. tensorflow Tensorboard2-【老鱼学tensorflow】

    前面我们用Tensorboard显示了tensorflow的程序结构,本节主要用Tensorboard显示各个参数值的变化以及损失函数的值的变化. 这里的核心函数有: histogram 例如: tf ...

  2. tensorflow卷积神经网络-【老鱼学tensorflow】

    前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我 ...

  3. tensorflow安装-【老鱼学tensorflow】

    TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,Tensor ...

  4. tensorflow RNN循环神经网络 (分类例子)-【老鱼学tensorflow】

    之前我们学习过用CNN(卷积神经网络)来识别手写字,在CNN中是把图片看成了二维矩阵,然后在二维矩阵中堆叠高度值来进行识别. 而在RNN中增添了时间的维度,因为我们会发现有些图片或者语言或语音等会在时 ...

  5. tensorflow用dropout解决over fitting-【老鱼学tensorflow】

    在机器学习中可能会存在过拟合的问题,表现为在训练集上表现很好,但在测试集中表现不如训练集中的那么好. 图中黑色曲线是正常模型,绿色曲线就是overfitting模型.尽管绿色曲线很精确的区分了所有的训 ...

  6. tensorflow会话控制-【老鱼学tensorflow】

    在tensorflow中,当定义好结构后,就要通过tf.session()来建立运行时的会话. 本例子应该不难理解,我们用tensorflow来计算一下一个1行2列的矩阵和2行1列矩阵的乘积: imp ...

  7. tensorflow变量-【老鱼学tensorflow】

    在程序中定义变量很简单,只要定义一个变量名就可以,但是tensorflow有点类似在另外一个世界,因此需要通过当前的世界中跟tensorlfow的世界中进行通讯,来告诉tensorflow的世界中定义 ...

  8. tensorflow 传入值-【老鱼学tensorflow】

    上个文章中讲述了tensorflow中如何定义变量以及如何读取变量的方式,本节主要讲述关于传入值. 变量主要用于在tensorflow系统中经常会被改变的值,而对于传入值,它只是当tensorflow ...

  9. tensorflow保存读取-【老鱼学tensorflow】

    当我们对模型进行了训练后,就需要把模型保存起来,便于在预测时直接用已经训练好的模型进行预测. 保存模型的权重和偏置值 假设我们已经训练好了模型,其中有关于weights和biases的值,例如: im ...

随机推荐

  1. Win10 + Ubuntu双系统,删除Ubuntu系统

    之前在电脑上装了win10 + ubuntu的双系统,偶尔会出问题,所以还是选择将ubuntu系统删掉. 正所谓“请神容易送神难”,安装ubuntu的时候,过程还算顺利,但是在删除Ubuntu的过程中 ...

  2. 关于Qt的StyleSheet作用范围

    Qt的StyleSheet是很方便的一个设置各种控件风格形态的属性,但是默认的StyleSheet会作用于所有的子控件,容易带来麻烦,以下几种情况,可以限制作用范围 以QTextEdit为例,实体名为 ...

  3. 第六十八天 js轮播图

    1.浮动与定位结合使用 浮动与相对定位 //1.两者均参与布局 //2.主浮动布局,相对布局辅助完成布局微调 //3.相对定位布局微调不同于盒模型布局微调,相对定位布局不影响盒子原有位置,就会影响兄弟 ...

  4. 【CQOI2017】【BZOJ4813】小Q的棋盘 DFS

    题目描述 有一棵树,你要从\(0\)号点开始走,你可以走\(m\)步,问你最多能经过多少个不同的点. \(n\leq 100\) 题解 出题人的做法是DP(一个简单的树形DP),但是可以直接通过一次D ...

  5. MT【318】分式不等式双代换

    已知$a,b>0$且$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{3}$,求$\dfrac{1}{a-1}+\dfrac{4}{b-1}$的最小值. 解:令$m=\d ...

  6. virtualbox虚拟机使用的是桥接网络无法连接外网

    virtualbox虚拟机使用的是桥接网络,获取到的DHCP,无法和外界通信 查看路由表发现有两个默认路由,优先级高的路由指向了,仅主机网络的网关 删除第一个默认路由

  7. postgreSQL学习(二):pgsql的一些基础操作

    在上一篇文章中我们学习了怎么安装pgsql,安装好了后,我们来学习一下怎么对pgsql进行创建操作以及相关的crud的操作啦 一 创建数据库 $ createdb test 然后你可能会遇到如下的错误 ...

  8. 部分安卓机型1px边框无法显示解决方法

    实践发现css样式中使用1px solid 在部分安卓机型无法显示. 网上找到解决方案:使用行内样式设置边框.

  9. 第二章 python的介绍及变量

    1.编程语言的介绍 a.机器语言 使用二进制编写指令的编程方式 b.汇编语言 汇编指令与机器语言相对应 c.高级语言 需要借助特殊的工具将其转换成机器语言,但是方便人进行阅读理解的编程方式 从执行效率 ...

  10. 使用Redisson实现分布式锁,Spring AOP简化之

    源码 Redisson概述 Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid).它不仅提供了一系列的分布式的Java常用对象,还提供了许多 ...