题目大意:

有n个节点m条边,边都是单向的,请你添加最少的边使得起点s到其他与其他每一个点之间都能互相到达

这题一看就是一个缩点啊

其实对于原有的m条边相连的一些点,如果之前他们已经形成了强连通分量(scc),那么它们之前就可以相互到达(不用修路),对于这些点我们可以把它们“缩”成一个“点”,这其实就是Tarjian缩点的思想

其实luogu里还有很多缩点的模板题,自己去找找吧,都不难的

那么如果你会了缩点,这个题只要缩完点之后统计一下入度为0的点就行了(让强连通分量之间连边)

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;
typedef long long ll;
const int inf=1e9+;
inline int read()
{
int p=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){p=p*+c-'';c=getchar();}
return f*p;}
const int maxn=;
const int maxm=;
struct Edge
{
int next,from,to;
}p[maxm];
struct point
{
int low,dnf,vis,fa,in;
}A[maxn];
int n,m,cnt,sum_scc,tot,S;
int Stack[maxn],top,ans,head[maxm];
inline void add_edge(int x,int y)//加边
{
cnt++;
p[cnt].from=head[x];
head[x]=cnt;
p[cnt].next=x;
p[cnt].to=y;
}
inline void Tarjian(int x)//Tarjian缩点
{
A[x].dnf=A[x].low=++tot;
A[x].vis=,Stack[++top]=x;
for(int i=head[x];i;i=p[i].from)
{
int y=p[i].to;
if(!A[y].dnf)
Tarjian(y),A[x].low=min(A[x].low,A[y].low);
else if(A[y].vis)
A[x].low=min(A[x].low,A[y].dnf);
}
if(A[x].dnf==A[x].low)
{
int y;
sum_scc++;
while(y=Stack[top--])
{
A[y].vis=;
A[y].fa=sum_scc;
if(x==y)break;
}
}
}
int main()
{
n=read(),m=read(),S=read();
for(int i=;i<=m;i++)
{
int x=read(),y=read();
add_edge(x,y);
}
for(int i=;i<=n;i++)
if(!A[i].dnf)Tarjian(i);
for(int i=;i<=m;i++)//统计入度
{
int x=A[p[i].next].fa,y=A[p[i].to].fa;
if(x!=y)A[y].in++;
}
for(int i=;i<=sum_scc;i++)
//没有入度的scc个数++
if(!A[i].in)ans++;
if(!A[A[S].fa].in)ans--;
//特判,起点所在的scc如果没有入度那么答案-1
printf("%d\n",ans);
return ;
}

CF999E Reachability from the Capital来自首都的可达性的更多相关文章

  1. [CF999E]Reachability from the Capital

    题目大意:有一个$n$个点$m$条边的有向图,起点$S$,要求你添加最少的边使得$S$可以到达所有点 题解:缩点,答案就是没有入边的强连通分量个数,注意,如果起点$S$所在的强连通块没有入边则不计入答 ...

  2. E - Reachability from the Capital

    E - Reachability from the Capital  CodeForces - 999E 题目链接:https://vjudge.net/contest/236513#problem/ ...

  3. E. Reachability from the Capital dfs暴力

    E. Reachability from the Capital 这个题目就是给你一个有向图,给你起点,问增加多少条边让这个图变成一个连通图. 这个因为n只有5000m只有5000 所以可以暴力枚举这 ...

  4. Reachability from the Capital

    题目描述 There are nn cities and mm roads in Berland. Each road connects a pair of cities. The roads in ...

  5. Reachability from the Capital CodeForces - 999E (强连通)

    There are nn cities and mm roads in Berland. Each road connects a pair of cities. The roads in Berla ...

  6. Reachability from the Capital(Codeforces Round #490 (Div. 3)+tarjan有向图缩点)

    题目链接:http://codeforces.com/contest/999/problem/E 题目: 题意:给你n个城市,m条单向边,问你需要加多少条边才能使得从首都s出发能到达任意一个城市. 思 ...

  7. Reachability from the Capital CodeForces - 999E(强连通分量 缩点 入度为0的点)

    题意: 问至少加几条边 能使点s可以到达所有的点 解析: 无向图的连通分量意义就是  在这个连通分量里 没两个点之间至少有一条可以相互到达的路径 所以 我们符合这种关系的点放在一起, 由s向这些点的任 ...

  8. E. Reachability from the Capital(tarjan+dfs)

    求联通分量个数,在dfs一次 #include <iostream> #include <algorithm> #include <cstring> #includ ...

  9. codeforces#999 E. Reachability from the Capital(图论加边)

    题目链接: https://codeforces.com/contest/999/problem/E 题意: 在有向图中加边,让$S$点可以到达所有点 数据范围: $ 1 \leq n \leq 50 ...

随机推荐

  1. 13. Roman to Integer ★

    题目内容: Given a roman numeral, convert it to an integer. Input is guaranteed to be within the range fr ...

  2. position三种属性的区别

    1.static(静态定位):默认值.没有定位,元素出现在正常的流中(忽略 top, bottom, left, right 或者 z-index 声明). 2.relative(相对定位):生成相对 ...

  3. Java ee Turorial Hello1 Hello1.java解析

    package javaeetutorial.hello1; import javax.enterprise.context.RequestScoped;import javax.inject.Nam ...

  4. 关于while read line 循环中变量作用域的问题

    前一阵用shell写了一个从数据库中抽取数据生成.xml文件的脚本,要求是每个文件中只生成1000条数据.于是用到了while read line 作为循环. 在制作文件计数器的时候发现了一个问题,在 ...

  5. zabbix添加IIS网站计数器(并发连接数)详解

    环境:windows server 2012 前提:IIS上要添加好配置   1,在被监控主机,powershell输入perfmon.msc   2,点击添加按钮     3,在下拉菜单中点击小箭头 ...

  6. 201771010141 周强《面向对象设计 java》第十五周实验总结

    理论部分 ◼ JAR文件◼ 应用程序首选项存储◼ Java Web Start JAR文件: 1.Java程序的打包:程序编译完成后,程序员将.class文件压缩打包为.jar文件后,GUI界面程序就 ...

  7. SpringBoot的学习【6.YML 和 Properties 的语法】

    1.YML的基本语法 KEY:(空格)value:(空格) 以空格的缩进来表示同一层级.属性和值是大小写敏感的. 2.YML和属性.属性值进行匹配 注解:@ConfigurationPropertie ...

  8. React native 中 SectionList用法

    一.代码 import React, { Component } from 'react'; import { AppRegistry, View, Text, SectionList, } from ...

  9. java类.方法创建.继续调用

    1.ctrl +n 创建类(首字母大写) 2.alt +s 选倒数第二个 创建方法(Superclass) 3.alt +s 选倒数第三个 创建带参数的方法(using fileds) 4.创建的vo ...

  10. 【oracle】dmp导数据库

    假定数据库A为源数据库,数据库B为目标数据库 step1在数据库A中,导出生成.dmp文件,操作流程如下(以下操作均在系统用户ora11g下执行) 1.该操作只需要在第一次使用时执行,A_dump_d ...