最近工作用到Spark,这里记一些自己接触到的Spark基本概念和知识。

本文链接:https://www.cnblogs.com/hhelibeb/p/10288915.html

名词

RDD:在高层,每个Spark应用包含一个driver程序,它运行用户的主函数,在集群上执行不同的并行作业。Spark中提供的主要抽象是弹性分布式数据集(resilient distributed dataset, RDD),它是分布在集群节点中的已分区的元素集合,可以被并行处理。RDD从Hadoop文件系统中的文件创建,或者从驱动程序中已有的Scala集创建。用户也可以要求Spark将RDD持久化在内存中,允许它在并行操作中被高效地复用。最后,RDD可以从节点故障中自动恢复。

Spark SQL:一个用于处理结构化数据的Spark模块。和RDD API不同,Spark SQL提供的接口会提供给Spark关于数据的结构和计算的更多信息。在内部,Spark SQL使用额外的信息来执行额外优化。有许多方式可以与Spark SQL交互,包含SQL和Dataset API。在进行计算时,无论使用哪种API/编程语言,都会使用相同的执行引擎。这意味着开发者可以基于数据变换的需要来自由切换不同的API。

Dataset:Dataset是分布式的数据集合。Dataset是Spark 1.6中新加入的接口,提供了RDD的优势(强类型化,应用lambda函数的能力),也提供了Spark SQL的优化执行引擎的优势。Dataset可以由JVM对象构造,然后通过函数变换(map, flatMap, filter等)来操纵。Dataset API在Scala和Java中可用。Python不支持Dataset API,但是由于Python的动态性,已经可以享受许多Dataset API的好处。(例如你可以通过row.columnName的方式自然地访问行中的字段)。R语言的情形与之类似。

DataFrame:DataFrame是一种有列名的Dataset。它在概念上等于关系数据库中的表或者R/Python中的数据帧,但是在底层有更多的优化。DataFrame可以从一个多重源构造,比如:结构化数据文件、Hive中的表、外部数据库或者既有的RDD。DataFrame API在Scala、Java、Python和R中可用。在Scala和Java,DataFrame被表示为多行Dataset。在Scala API中,Dataframe可以简单地表示为Dataset[Row]。而在Java API中,用户需要使用Dataset<Row>来表示Dataframe。

TempView:createOrReplaceTempView方法会创建(如果已存在同名视图的话,则替换)一个惰性计算视图,你可以将这个视图视作hive表来使用。除非你将Dataset缓存,否则它不会持久化到内存中。可以使用spark.catalog.dropTempView("tempViewName")来删除视图。

Caching and Persistence:缓存或持久化是Spark计算的优化技术。 它们有助于保存临时部分结果,以便可以在后续阶段重复使用。 因此,RDD的这些中间结果保存在内存(默认)或固态存储(如磁盘和/或复制)中。

SparkSession:Spark SQL的入口点。在开发Spark SQL应用时,这是首先要创建的对象之一。

你可以使用SparkSession.builder方法来创建SparkSession。

import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder
.appName("My Spark Application") // optional and will be autogenerated if not specified
.master("local[*]") // only for demo and testing purposes, use spark-submit instead
.enableHiveSupport() // self-explanatory, isn't it?
.config("spark.sql.warehouse.dir", "target/spark-warehouse")
.withExtensions { extensions =>
extensions.injectResolutionRule { session =>
...
}
extensions.injectOptimizerRule { session =>
...
}
}
.getOrCreate

一旦被创建,SparkSession会允许你创建Dataframe(基于RDD或一个Scala Seq等),创建Dataset,方为Saprk SQL服务(例如ExperimentalMethods, ExecutionListenerManager, UDFRegistration),运行SQL查询,载入表以及访问DataFrameReader接口以载入选定格式的Dataset。

你的单个应用中可以有多个SparkSession。常见的用例是让每个SparkSession保持关系实体在逻辑上分离。

模块

SparkContext: Spark功能的主入口。
RDD: 弹性分布式数据集,见上文。
Broadcast: 可以在task间复用的广播变量。
Accumulator: 只允许增加值的共享变量。
SparkConf: 配置Spark用。
SparkFiles: 访问由作业载入的文件。
StorageLevel: 缓存持久化的级别。
TaskContext: 当前运行的作业的信息(实验性)。
RDDBarrier: 用屏障包装RDD以实现屏障执行。
BarrierTaskContext: 为屏障执行提供额外信息和工具的TaskContext.
BarrierTaskInfo: 与屏障作业有关的信息。

pyspark.sql.SparkSession: Dataframe和Spark SQL功能的主入口点。
pyspark.sql.DataFrame: 按列名分组的分布式数据集合,见上文。
pyspark.sql.Column: Dataframe中的列表达式。
pyspark.sql.Row: Dataframe中的行。
pyspark.sql.GroupedData: 聚合方法, 由 DataFrame.groupBy()返回.
pyspark.sql.DataFrameNaFunctions: 处理丢失数据(null值)的方法。
pyspark.sql.DataFrameStatFunctions: 静态功能方法。
pyspark.sql.functions: 对Dataframe可用的内建函数。
pyspark.sql.types: 可用的数据类型列表、
pyspark.sql.Window: 用于使用Window函数

参考:

Spark Python API Docs

Spark SQL Guide

How does createOrReplaceTempView work in Spark?

Mastering Apache Spark 2.3.2

Spark 编程指南

Spark: Why should we use SparkSession ?

Spark中的一些概念的更多相关文章

  1. Spark中的编程模型

    1. Spark中的基本概念 Application:基于Spark的用户程序,包含了一个driver program和集群中多个executor. Driver Program:运行Applicat ...

  2. 大数据学习day19-----spark02-------0 零碎知识点(分区,分区和分区器的区别) 1. RDD的使用(RDD的概念,特点,创建rdd的方式以及常见rdd的算子) 2.Spark中的一些重要概念

    0. 零碎概念 (1) 这个有点疑惑,有可能是错误的. (2) 此处就算地址写错了也不会报错,因为此操作只是读取数据的操作(元数据),表示从此地址读取数据但并没有进行读取数据的操作 (3)分区(有时间 ...

  3. 关于Spark中RDD的设计的一些分析

    RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Dat ...

  4. 【Spark篇】---Spark中Shuffle文件的寻址

    一.前述 Spark中Shuffle文件的寻址是一个文件底层的管理机制,所以还是有必要了解一下的. 二.架构图 三.基本概念: 1) MapOutputTracker MapOutputTracker ...

  5. 【Spark篇】---Spark中Shuffle机制,SparkShuffle和SortShuffle

    一.前述 Spark中Shuffle的机制可以分为HashShuffle,SortShuffle. SparkShuffle概念 reduceByKey会将上一个RDD中的每一个key对应的所有val ...

  6. 【Spark篇】--Spark中的宽窄依赖和Stage的划分

    一.前述 RDD之间有一系列的依赖关系,依赖关系又分为窄依赖和宽依赖. Spark中的Stage其实就是一组并行的任务,任务是一个个的task . 二.具体细节 窄依赖 父RDD和子RDD parti ...

  7. 【Spark篇】---Spark中控制算子

    一.前述 Spark中控制算子也是懒执行的,需要Action算子触发才能执行,主要是为了对数据进行缓存. 控制算子有三种,cache,persist,checkpoint,以上算子都可以将RDD持久化 ...

  8. Spark集群基础概念 与 spark架构原理

    一.Spark集群基础概念 将DAG划分为多个stage阶段,遵循以下原则: 1.将尽可能多的窄依赖关系的RDD划为同一个stage阶段. 2.当遇到shuffle操作,就意味着上一个stage阶段结 ...

  9. 什么是spark(六)Spark中的对象

    Spark中的对象 Spark的Conf,极简化的场景,可以设置一个空conf给sparkContext,在执行spark-submit的时候,系统会默认给sparkContext赋一个SparkCo ...

随机推荐

  1. JVM基础系列第6讲:Java 虚拟机内存结构

    看到这里,我相信大家对于一个 Java 源文件是如何变成字节码文件,以及字节码文件的含义已经非常清楚了.那么接下来就是让 Java 虚拟机运行字节码文件,从而得出我们最终想要的结果了.在这个过程中,J ...

  2. JDK1.8源码(一)——java.util.ArrayList

      ArrayList 定义 ArrayList 是一个用数组实现的集合,支持随机访问,元素有序且可以重复. public class ArrayList<E> extends Abstr ...

  3. 使用ML.NET实现白葡萄酒品质预测

    导读:ML.NET系列文章 本文将基于ML.NET v0.2预览版,介绍机器学习中的分类和回归两个重要概念,并实现白葡萄酒品质预测. 本系列前面的文章也提到了一些,经典的机器学习最主要的特点就是模拟, ...

  4. .NET Core 多项目工程生成EF迁移代码

    错误表现 dotnet ef的官方文档针对的是单个项目的情况,即启动项目就是DbContext所在项目. 对于分层结构的解决方案如启动项目是WebApi项目,DbContext在基础设施项目,在Web ...

  5. 环境与工具2:建立高效的mac环境

    你的工作与生活离不开电脑,电脑是一个工具,也是一个环境.环境是不是绿水青山,是不是得心应手,这是很重要的事情.小程平时使用macbook来学习跟娱乐,最近重装了系统,很多环境与工具都需要重新组建. 那 ...

  6. 认识RabbitMQ交换机模型

    前言 RabbitMQ是消息队列中间件(Message Queue Middleware)中一种,工作虽然有用到,但是却没有形成很好的整体包括,主要是一些基础概念的认识,这里通过阅读<Rabbi ...

  7. Centos7-yum部署配置LAMP-之LAMP及php-fpm实现反代动态资源

    一.简介 LAMP:linux+apache+mysql(这里用mariadb)+php(perl,python) LAMMP:memcached缓存的 CGI:Common Gateway Inte ...

  8. DSAPI多功能组件编程应用-参考-Win32API常数

    DSAPI多功能组件编程应用-参考-Win32API常数 在编程过程中,常常需要使用Win32API来实现一些特定功能,而Win32API又往往需要使用一些API常数,百度搜索常数值,查手册,也就成了 ...

  9. 杭电ACM2007--平方和与立方和

    平方和与立方和 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  10. Aspose.Word邮件合并之自定义数据源

    Aspose.Word在进行邮件合并时,默认的几个重载方法对Database支持比较友好,但是也可以通过自定义数据源来实现从集合或者对象中返回数据进行邮件合并. 自定义数据源主要是通过实现IMailM ...