[物理学与PDEs]第1章第8节 静电场和静磁场 8.2 稳定电流的电场
1. 此时, Maxwell 方程组为 $$\beex \bea \Div{\bf D}&=\rho_f,\\ \rot {\bf E}&={\bf 0},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&={\bf j}_f. \eea \eeex$$
2. 电荷守恒律方程: $$\bex \Div{\bf j}_f=0. \eex$$
3. 电势 $\phi$: $$\beex \bea &\quad {\bf E}=-\n\phi\\ &\ra {\bf j}_f=-\cfrac{1}{\gamma}\n\phi\quad\sex{Ohm\mbox{ 定律: }{\bf j}_f=\sigma {\bf E}=\cfrac{1}{\gamma}{\bf E}}\\ &=0=\Div{\bf j}_f=-\cfrac{\p}{\p x}\sex{\cfrac{1}{\gamma}\cfrac{\p\phi}{\p x}} -\cfrac{\p}{\p y}\sex{\cfrac{1}{\gamma}\cfrac{\p\phi}{\p y}} -\cfrac{\p}{\p z}\sex{\cfrac{1}{\gamma}\cfrac{\p\phi}{\p z}}. \eea \eeex$$
4. 边界条件: $$\bex \sez{{\bf E}}\times{\bf n}={\bf 0},\quad \sez{{\bf j}_f}\cdot{\bf n}=0 \eex$$ 化为电势 $\phi$ 满足的边界条件: $$\bex \sez{\phi}=0,\quad \sez{\cfrac{1}{\gamma}\cfrac{\p\phi}{\p n}}=0. \eex$$
5. 其他边界条件.
[物理学与PDEs]第1章第8节 静电场和静磁场 8.2 稳定电流的电场的更多相关文章
- [物理学与PDEs]第1章第8节 静电场和静磁场 8.3 静磁场
1. 静磁场: 由稳定电流形成的磁场. 2. 此时, Maxwell 方程组为 $$\beex \bea \Div{\bf D}&=\rho_f,\\ \rot {\bf E}&={\ ...
- [物理学与PDEs]第1章第8节 静电场和静磁场 8.1 静电场
1. 静电场: 由静止电荷产生的稳定电场. 2. 此时, Maxwell 方程组为 $$\bex \Div{\bf D}=\rho_f,\quad \rot{\bf E}={\bf 0}. \eex$ ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
随机推荐
- SQL LEN() 函数
LEN() 函数 LEN 函数返回文本字段中值的长度. SQL LEN() 语法 SELECT LEN(column_name) FROM table_name SQL LEN() 实例 我们拥有下面 ...
- MYSQL primary key use btree 是什么含义了解一下
CREATE TABLE `sth_definition` ( `id` int(11) NOT NULL AUTO_INCREMENT, `analyseId` bigint(20) DEFAULT ...
- Java MultipartFile 使用记录
private void file(String path,MultipartFile file){ String separator = "/"; String originFi ...
- 使用 ESP8266 制作 WiFi 干扰器 - 无需密码即可使用任何 WiFi
嘿,朋友,我是 Kedar,你有没有想阻止所有的 WiFi信号?或者只是想从 WiFi 踢某人或邻居 WiFi .那么,本玩法是你等待结束的时刻了.这是为你提供的.仅需 $8 的 DIY Wifi 干 ...
- (三)Installation
Elasticsearch requires at least Java 8. Specifically as of this writing, it is recommended that you ...
- C++ SIMD
SIMD Single Instruction Multiple Data
- MD5加密加盐
Java实现MD5的随机加盐加密,这样以来就很难解密了,必须使用原密码才能正常的登录系统了,以下为Java实现的MD5随机加盐加密,以及使用Apache的Hex类实现Hex(16进制字符串和)和字节数 ...
- 炸弹人游戏开发系列(7):加入敌人,使用A*算法寻路
前言 上文中我们实现了炸弹人与墙的碰撞检测,以及设置移动步长来解决发现的问题.本文会加入1个AI敌人,敌人使用A*算法追踪炸弹人. 本文目的 加入敌人,追踪炸弹人 本文主要内容 开发策略 加入敌人 实 ...
- 控制结构(6): 最近最少使用(LRU)
// 上一篇:必经之地(using) // 下一篇:程序计数器(PC) 基于语言提供的基本控制结构,更好地组织和表达程序,需要良好的控制结构. There are only two hard thin ...
- Spring 简单使用IoC与DI——XML配置
目录 Spring简介 导入jar包 Spring配置文件 Spring的IoC IoC简介 快速使用IoC Spring创建对象的三种方式 使用构造方法 使用实例工厂 使用静态静态工厂 Spring ...