[物理学与PDEs]第1章第8节 静电场和静磁场 8.2 稳定电流的电场
1. 此时, Maxwell 方程组为 $$\beex \bea \Div{\bf D}&=\rho_f,\\ \rot {\bf E}&={\bf 0},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&={\bf j}_f. \eea \eeex$$
2. 电荷守恒律方程: $$\bex \Div{\bf j}_f=0. \eex$$
3. 电势 $\phi$: $$\beex \bea &\quad {\bf E}=-\n\phi\\ &\ra {\bf j}_f=-\cfrac{1}{\gamma}\n\phi\quad\sex{Ohm\mbox{ 定律: }{\bf j}_f=\sigma {\bf E}=\cfrac{1}{\gamma}{\bf E}}\\ &=0=\Div{\bf j}_f=-\cfrac{\p}{\p x}\sex{\cfrac{1}{\gamma}\cfrac{\p\phi}{\p x}} -\cfrac{\p}{\p y}\sex{\cfrac{1}{\gamma}\cfrac{\p\phi}{\p y}} -\cfrac{\p}{\p z}\sex{\cfrac{1}{\gamma}\cfrac{\p\phi}{\p z}}. \eea \eeex$$
4. 边界条件: $$\bex \sez{{\bf E}}\times{\bf n}={\bf 0},\quad \sez{{\bf j}_f}\cdot{\bf n}=0 \eex$$ 化为电势 $\phi$ 满足的边界条件: $$\bex \sez{\phi}=0,\quad \sez{\cfrac{1}{\gamma}\cfrac{\p\phi}{\p n}}=0. \eex$$
5. 其他边界条件.
[物理学与PDEs]第1章第8节 静电场和静磁场 8.2 稳定电流的电场的更多相关文章
- [物理学与PDEs]第1章第8节 静电场和静磁场 8.3 静磁场
1. 静磁场: 由稳定电流形成的磁场. 2. 此时, Maxwell 方程组为 $$\beex \bea \Div{\bf D}&=\rho_f,\\ \rot {\bf E}&={\ ...
- [物理学与PDEs]第1章第8节 静电场和静磁场 8.1 静电场
1. 静电场: 由静止电荷产生的稳定电场. 2. 此时, Maxwell 方程组为 $$\bex \Div{\bf D}=\rho_f,\quad \rot{\bf E}={\bf 0}. \eex$ ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
随机推荐
- 【Linux基础】mount报错:mount.nfs: Remote I/O error
问题描述:mount 报错:mount.nfs: Remote I/O error 挂载时需要指明版本,由于NFS服务器有多个版本,V2.V3.V4.而且各版本同时运行,因此挂载时需要说明版本号. 由 ...
- .NET CORE学习笔记系列(2)——依赖注入[5]: 创建一个简易版的DI框架[下篇]
为了让读者朋友们能够对.NET Core DI框架的实现原理具有一个深刻而认识,我们采用与之类似的设计构架了一个名为Cat的DI框架.在上篇中我们介绍了Cat的基本编程模式,接下来我们就来聊聊Cat的 ...
- java程序启动 环境属性的获取
System.getProperties().list(System.out); 如果要获取某一个属性,例如常见的“操作系统” 则 System.getProperty("os.name& ...
- jenkins乱码解决问题
1.jenkins控制台线上乱码解决 系统管理——系统设置,添加编码环境变量 zh.CH.UTF-8 2.java启动后,tomcat日志显示乱码,原因是环境变量没有带过去,因此shell脚本头部需要 ...
- (四)Exploring Your Cluster
The REST API Now that we have our node (and cluster) up and running, the next step is to understand ...
- Vue-移动端项目真机测试
一.查看ip地址 在控制台输入 ifconfig 查看ip地址 二.修改webpack-dev-server配置项 webpack-dev-server 默认不支持ip地址访问,需要修改配置项 三.测 ...
- Java面试准备之Java基础
1.Java 语言的优点 面向对象,平台无关,内存管理,安全性,多线程,Java 是解释型的 2.Java 和 C++的区别 多重继承(java接口多重,类不支持,C++支持) 自动内存管理 预处理功 ...
- Jquery密码强度校验
function passValidate(){ var password=$password.val().trim() if(password===""){ $mima.addC ...
- 2 数据分析之Numpy模块(1)
Numpy Numpy(Numerical Python的简称)是高性能科学计算和数据分析的基础包.它是我们课程所介绍的其他高级工具的构建基础. 其部分功能如下: ndarray, 一个具有复杂广播能 ...
- 通过FactoryBean配置Bean
这是配置Bean的第三种方式,FactoryBean是Spring为我们提供的,我们先来看看源码: 第一个方法:public abstract T getObject() throws Excepti ...