After 4 years' waiting, the game "Chinese Paladin 5" finally comes out. Tomato is a crazy fan, and luckily he got the first release. Now he is at home, ready to begin his journey. 
But before starting the game, he must first activate the product on the official site. There are too many passionate fans that the activation server cannot deal with all the requests at the same time, so all the players must wait in queue. Each time, the server deals with the request of the first player in the queue, and the result may be one of the following, each has a probability: 
1. Activation failed: This happens with the probability of p1. The queue remains unchanged and the server will try to deal with the same request the next time. 
2. Connection failed: This happens with the probability of p2. Something just happened and the first player in queue lost his connection with the server. The server will then remove his request from the queue. After that, the player will immediately connect to the server again and starts queuing at the tail of the queue.
3. Activation succeeded: This happens with the probability of p3. Congratulations, the player will leave the queue and enjoy the game himself. 
4. Service unavailable: This happens with the probability of p4. Something just happened and the server is down. The website must shutdown the server at once. All the requests that are still in the queue will never be dealt. 
Tomato thinks it sucks if the server is down while he is still waiting in the queue and there are no more than K-1 guys before him. And he wants to know the probability that this ugly thing happens. 
To make it clear, we say three things may happen to Tomato: he succeeded activating the game; the server is down while he is in the queue and there are no more than K-1 guys before him; the server is down while he is in the queue and there are at least K guys before him. 
Now you are to calculate the probability of the second thing.

InputThere are no more than 40 test cases. Each case in one line, contains three integers and four real numbers: N, M (1 <= M <= N <= 2000), K (K >= 1), p1, p2, p3, p4 (0 <= p1, p2, p3, p4 <= 1, p1 + p2 + p3 + p4 = 1), indicating there are N guys in the queue (the positions are numbered from 1 to N), and at the beginning Tomato is at the Mth position, with the probability p1, p2, p3, p4 mentioned above.OutputA real number in one line for each case, the probability that the ugly thing happens. 
The answer should be rounded to 5 digits after the decimal point.

Sample Input

2 2 1 0.1 0.2 0.3 0.4
3 2 1 0.4 0.3 0.2 0.1
4 2 3 0.16 0.16 0.16 0.52

Sample Output

0.30427
0.23280
0.90343
令 dp[i][j] 表示一共有 i 个人,并且 tomato 在第 j 个位置时,达到最终状态的概率。
那么有三种情况:
1.j == 1 : dp[i][j] = p1 * dp[i][j] + p2 * dp[i][i] + p4
2.2 <= j <= k : dp[i][j] = p1 * dp[i][j] + p2 * dp[i][j-1] + p3 * dp[i-1][j-1] + p4
3.k < j <= i : dp[i][j] = p1 * dp[i][j] + p2 * dp[i][j-1] + p3 * dp[i-1][j-1]
移项化简得
1.j == 1 : dp[i][j] = p21 * dp[i][i] + p41
2.2 <= j <= k : dp[i][j] = p21 * dp[i][j-1] + p31 * dp[i-1][j-1] + p41
3.k < j <= i : dp[i][j] = p21 * dp[i][j-1] + p31 * dp[i-1][j-1]
其中p21 = p2 / (1 - p1), p31 = p3 / (1 - p1), p41 = p4 / (1 - p1).
此时当计算到 i 时, dp[i-1][] 的值已经全部求出来了,所以可以把后面部分看成常数
1.j == 1 : dp[i][j] = p21 * dp[i][i] + c[j] c[j] = p41
2.2 <= j <= k : dp[i][j] = p21 * dp[i][j-1] + c[j] c[j] = p31 * dp[i-1][j-1] + p41
3.k < j <= i : dp[i][j] = p21 * dp[i][j-1] + c[j] c[j] = p31 * dp[i-1][j-1]
然后 dp[i][i] 通过 2、3 式推到 dp[i][1], 然后在用 1 代入 dp[i][1], 求出 dp[i][i], 其式是
dp[i][i] = p21^(i) * dp[i][i] + Σ(p21^(i-x) * c[x])
然后就可以把 dp[i][] 的值都求出来,最后的答案就是dp[n][m]
 /*
.
';;;;;.
'!;;;;;;!;`
'!;|&#@|;;;;!:
`;;!&####@|;;;;!:
.;;;!&@$$%|!;;;;;;!'.`:::::'.
'!;;;;;;;;!$@###&|;;|%!;!$|;;;;|&&;.
:!;;;;!$@&%|;;;;;;;;;|!::!!:::;!$%;!$%` '!%&#########@$!:.
;!;;!!;;;;;|$$&@##$;;;::'''''::;;;;|&|%@$|;;;;;;;;;;;;;;;;!$;
;|;;;;;;;;;;;;;;;;;;!%@#####&!:::;!;;;;;;;;;;!&####@%!;;;;$%`
`!!;;;;;;;;;;!|%%|!!;::;;|@##%|$|;;;;;;;;;;;;!|%$#####%;;;%&;
:@###&!:;;!!||%%%%%|!;;;;;||;;;;||!$&&@@%;;;;;;;|$$##$;;;%@|
;|::;;;;;;;;;;;;|&&$|;;!$@&$!;;;;!;;;;;;;;;;;;;;;;!%|;;;%@%.
`!!;;;;;;;!!!!;;;;;$@@@&&&&&@$!;!%|;;;;!||!;;;;;!|%%%!;;%@|.
%&&$!;;;;;!;;;;;;;;;;;|$&&&&&&&&&@@%!%%;!||!;;;;;;;;;;;;;$##!
!%;;;;;;!%!:;;;;;;;;;;!$&&&&&&&&&&@##&%|||;;;!!||!;;;;;;;$&:
':|@###%;:;;;;;;;;;;;;!%$&&&&&&@@$!;;;;;;;!!!;;;;;%&!;;|&%.
!@|;;;;;;;;;;;;;;;;;;|%|$&&$%&&|;;;;;;;;;;;;!;;;;;!&@@&'
.:%#&!;;;;;;;;;;;;;;!%|$$%%&@%;;;;;;;;;;;;;;;;;;;!&@:
.%$;;;;;;;;;;;;;;;;;;|$$$$@&|;;;;;;;;;;;;;;;;;;;;%@%.
!&!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;|@#;
`%$!;;;;;;;;;;;$@|;;;;;;;;;;;;;;;;;;;;;;;;!%$@#@|.
.|@%!;;;;;;;;;!$&%||;;;;;;;;;;;;;;;;;!%$$$$$@#|.
;&$!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;%#####|.
|##$|!;;;;;;::'':;;;;;;;;;;;;;!%$$$@#@;
;@&|;;;;;;;::'''''':;;;;;;;|$&@###@|`
.%##@|;;;;:::''''''''''::;!%&##$'
`$##@$$@@&|!!;;;:'''''::::;;;;;|&#%.
;&@##&$%!;;;;;;::''''''''::;!|%$@#@&@@:
.%@&$$|;;;;;;;;;;:'''':''''::;;;%@#@@#%.
:@##@###@$$$$$|;;:'''':;;!!;;;;;;!$#@@#$;`
`%@$$|;;;;;;;;:'''''''::;;;;|%$$|!!&###&'
|##&%!;;;;;::''''''''''''::;;;;;;;!$@&:`!'
:;!@$|;;;;;;;::''''''''''':;;;;;;;;!%&@$: !@#$'
|##@@&%;;;;;::''''''''':;;;;;;;!%&@#@$%: '%%!%&;
|&%!;;;;;;;%$!:''''''':|%!;;;;;;;;|&@%||` '%$|!%&;
|@%!;;!!;;;||;:'''''':;%$!;;;;!%%%&#&%$&: .|%;:!&%`
!@&%;;;;;;;||;;;:''::;;%$!;;;;;;;|&@%;!$; `%&%!!$&:
'$$|;!!!!;;||;;;;;;;;;;%%;;;;;;;|@@|!$##; !$!;:!$&:
|#&|;;;;;;!||;;;;;;;;!%|;;;;!$##$;;;;|%' `%$|%%;|&$'
|&%!;;;;;;|%;;;;;;;;$$;;;;;;|&&|!|%&&; .:%&$!;;;:!$@!
`%#&%!!;;;;||;;;;;!$&|;;;!%%%@&!;;;!!;;;|%!;;%@$!%@!
!&!;;;;;;;;;||;;%&!;;;;;;;;;%@&!;;!&$;;;|&%;;;%@%`
'%|;;;;;;;;!!|$|%&%;;;;;;;;;;|&#&|!!||!!|%$@@|'
.!%%&%'`|$; :|$#%|@#&;%#%.
*/
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout) typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 2e3 + ;
const int maxm = 1e5 + ;
const int mod = 1e9 + ;
const ll INF = 1e18 + ;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-;
using namespace std; int n, m, k;
int cas, tol, T; double c[maxn];
double pp[maxn];
double dp[maxn][maxn]; int main() {
double p1, p2, p3, p4;
while(~scanf("%d%d%d%lf%lf%lf%lf", &n, &m, &k, &p1, &p2, &p3, &p4)) {
if(fabs(p4) <= eps) {
printf("0.00000\n");
continue;
}
double p21 = p2 / ( - p1);
double p31 = p3 / ( - p1);
double p41 = p4 / ( - p1);
pp[] = 1.0;
for(int i=; i<=n; i++)
pp[i] = pp[i-] * p21;
dp[][] = p41 / ( - p21);
c[] = p41;
for(int i=; i<=n; i++) {
for(int j=; j<=i; j++) {
if(j == ) c[j] = p41;
else if(j <= k) c[j] = p31 * dp[i-][j-] + p41;
else c[j] = p31 * dp[i-][j-];
}
double tmp = ;
for(int j=; j<=i; j++) {
tmp += pp[i-j] * c[j];
}
dp[i][i] = tmp / (1.0 - pp[i]);
dp[i][] = p21 * dp[i][i] + c[];
for(int j=; j<i; j++) {
dp[i][j] = p21 * dp[i][j-] + c[j];
}
}
for(int i=; i<=n; i++) {
for(int j=; j<=i; j++) {
printf("%f%c", dp[i][j], j==i ? '\n' : ' ');
}
}
printf("%.5f\n", dp[n][m]);
}
return ;
}

Activation HDU - 4089(概率dp)的更多相关文章

  1. hdu 4089 概率dp

    /* 题目大意:注册一款游戏需要排队,一共有四种事件: 1.注册失败,队列不变,概率为p1 2.注册过程中断开连接,正在注册的人排到队列的末尾,概率为p2 3.注册成功,移出队列,概率为p3 4.服务 ...

  2. HDU 4599 概率DP

    先推出F(n)的公式: 设dp[i]为已经投出连续i个相同的点数平均还要都多少次才能到达目标状态. 则有递推式dp[i] = 1/6*(1+dp[i+1]) + 5/6*(1+dp[1]).考虑当前这 ...

  3. HDU 5001 概率DP || 记忆化搜索

    2014 ACM/ICPC Asia Regional Anshan Online 给N个点,M条边组成的图,每一步能够从一个点走到相邻任一点,概率同样,问D步后没走到过每一个点的概率 概率DP  測 ...

  4. hdu 3853 概率dp

    题意:在一个R*C的迷宫里,一个人在最左上角,出口在右下角,在每个格子上,该人有几率向下,向右或者不动,求到出口的期望 现在对概率dp有了更清楚的认识了 设dp[i][j]表示(i,j)到(R,C)需 ...

  5. HDU 4815 概率dp,背包

    Little Tiger vs. Deep Monkey Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K ( ...

  6. hdu 4050(概率dp)

    算是挺简单的一道概率dp了,如果做了前面的聪聪于可可的话,这题不需要什么预处理,直接概率dp就行了... #include <stdio.h> #include <stdlib.h& ...

  7. Activation HDU - 4089 (概率DP)

    kuangbin的博客 强 #include <bits/stdc++.h> using namespace std; const int MAXN = 2005; const doubl ...

  8. HDU 4405 (概率DP)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4405 题目大意:飞行棋.如果格子不是飞行点,扔骰子前进.否则直接飞到目标点.每个格子是唯一的飞行起点 ...

  9. hdu 4336 概率dp + 状压

    hdu 4336 小吃包装袋里面有随机赠送一些有趣的卡片,如今你想收集齐 N 张卡片.每张卡片在食品包装袋里出现的概率是p[i] ( Σp[i] <= 1 ), 问你收集全部卡片所需购买的食品数 ...

随机推荐

  1. 探究高级的Kotlin Coroutines知识

    要说程序如何从简单走向复杂, 线程的引入必然功不可没, 当我们期望利用线程来提升程序效能的过程中, 处理线程的方式也发生了从原始时代向科技时代发生了一步一步的进化, 正如我们的Elisha大神所著文章 ...

  2. 从零学习Flutter(一):初识Dart

    Fluter是Google推出的跨平台开发App的一套框架,很多人都说,Google出品比属于金品,故,我也来凑凑热闹,Fluter是用Dart写的,所以在用Fluter之前,我们还是有必要简单了解一 ...

  3. 用canvas给视频图片添加特效

    Canvas制作视频图片特效 1. Canvas介绍 1.1Canvas是html5上的一个画布标签,功能有点类似java的swing.可以在canvas上画线条 弧线, 文字 就是画布的功能. 具体 ...

  4. Vue CLI 3.0脚手架如何在本地配置mock数据

    前后端分离的开发模式已经是目前前端的主流模式,至于为什么会前后端分离的开发我们就不做过多的阐述,既然是前后端分离的模式开发肯定是离不开前端的数据模拟阶段. 我们在开发的过程中,由于后台接口的没有完成或 ...

  5. mssql sqlserver 快速表备份和表还原的方法

    摘要: 在sqlserver维护中,我们偶尔需要运行一些sql脚本对数据进行相关修改操作,在数据修改前我们必须对表数据进行备份来避免出现异常时,可以快速修复数据, 下文讲述sqlserver维护中,快 ...

  6. Saltstack_使用指南02_远程执行-验证

    1. 主机规划 2. Master与哪些minion通信 2.1. Master与哪些minion正常通信 [root@salt100 ~]# salt '*' test.ping salt100: ...

  7. 一次CMS GC问题排查过程(理解原理+读懂GC日志)

    这个是之前处理过的一个线上问题,处理过程断断续续,经历了两周多的时间,中间各种尝试,总结如下.这篇文章分三部分: 1.问题的场景和处理过程:2.GC的一些理论东西:3.看懂GC的日志 先说一下问题吧 ...

  8. 贷款资讯类APP、贷款资讯网站廉价卖,需要的进来看看

    [app介绍]卡贷资讯app为您提供信用卡申请攻略及借款资讯以及贷款口子,让你借钱借款路上不再愁.[功能特点]1.资讯:聚合各种贷款资讯知识,掌握核心信用卡申请攻略,借款借钱不亏,亦不被骗:2.工具: ...

  9. 20145203盖泽双《网络对抗技术》拓展:注入:shellcode及return-into-libc攻击

    20145203盖泽双<网络对抗技术>拓展:注入:shellcode及return-into-libc攻击 一.注入:shellcode 1.编写一段用于获取Shellcode的C语言代码 ...

  10. Linux内核入门到放弃-Ext2数据结构-《深入Linux内核架构》笔记

    Ext2文件系统 物理结构 结构概观 块组是该文件系统的基本成分,容纳了文件系统的其他结构.每个文件系统都由大量块组组成,在硬盘上相继排布: ----------------------------- ...