After 4 years' waiting, the game "Chinese Paladin 5" finally comes out. Tomato is a crazy fan, and luckily he got the first release. Now he is at home, ready to begin his journey. 
But before starting the game, he must first activate the product on the official site. There are too many passionate fans that the activation server cannot deal with all the requests at the same time, so all the players must wait in queue. Each time, the server deals with the request of the first player in the queue, and the result may be one of the following, each has a probability: 
1. Activation failed: This happens with the probability of p1. The queue remains unchanged and the server will try to deal with the same request the next time. 
2. Connection failed: This happens with the probability of p2. Something just happened and the first player in queue lost his connection with the server. The server will then remove his request from the queue. After that, the player will immediately connect to the server again and starts queuing at the tail of the queue.
3. Activation succeeded: This happens with the probability of p3. Congratulations, the player will leave the queue and enjoy the game himself. 
4. Service unavailable: This happens with the probability of p4. Something just happened and the server is down. The website must shutdown the server at once. All the requests that are still in the queue will never be dealt. 
Tomato thinks it sucks if the server is down while he is still waiting in the queue and there are no more than K-1 guys before him. And he wants to know the probability that this ugly thing happens. 
To make it clear, we say three things may happen to Tomato: he succeeded activating the game; the server is down while he is in the queue and there are no more than K-1 guys before him; the server is down while he is in the queue and there are at least K guys before him. 
Now you are to calculate the probability of the second thing.

InputThere are no more than 40 test cases. Each case in one line, contains three integers and four real numbers: N, M (1 <= M <= N <= 2000), K (K >= 1), p1, p2, p3, p4 (0 <= p1, p2, p3, p4 <= 1, p1 + p2 + p3 + p4 = 1), indicating there are N guys in the queue (the positions are numbered from 1 to N), and at the beginning Tomato is at the Mth position, with the probability p1, p2, p3, p4 mentioned above.OutputA real number in one line for each case, the probability that the ugly thing happens. 
The answer should be rounded to 5 digits after the decimal point.

Sample Input

2 2 1 0.1 0.2 0.3 0.4
3 2 1 0.4 0.3 0.2 0.1
4 2 3 0.16 0.16 0.16 0.52

Sample Output

0.30427
0.23280
0.90343
令 dp[i][j] 表示一共有 i 个人,并且 tomato 在第 j 个位置时,达到最终状态的概率。
那么有三种情况:
1.j == 1 : dp[i][j] = p1 * dp[i][j] + p2 * dp[i][i] + p4
2.2 <= j <= k : dp[i][j] = p1 * dp[i][j] + p2 * dp[i][j-1] + p3 * dp[i-1][j-1] + p4
3.k < j <= i : dp[i][j] = p1 * dp[i][j] + p2 * dp[i][j-1] + p3 * dp[i-1][j-1]
移项化简得
1.j == 1 : dp[i][j] = p21 * dp[i][i] + p41
2.2 <= j <= k : dp[i][j] = p21 * dp[i][j-1] + p31 * dp[i-1][j-1] + p41
3.k < j <= i : dp[i][j] = p21 * dp[i][j-1] + p31 * dp[i-1][j-1]
其中p21 = p2 / (1 - p1), p31 = p3 / (1 - p1), p41 = p4 / (1 - p1).
此时当计算到 i 时, dp[i-1][] 的值已经全部求出来了,所以可以把后面部分看成常数
1.j == 1 : dp[i][j] = p21 * dp[i][i] + c[j] c[j] = p41
2.2 <= j <= k : dp[i][j] = p21 * dp[i][j-1] + c[j] c[j] = p31 * dp[i-1][j-1] + p41
3.k < j <= i : dp[i][j] = p21 * dp[i][j-1] + c[j] c[j] = p31 * dp[i-1][j-1]
然后 dp[i][i] 通过 2、3 式推到 dp[i][1], 然后在用 1 代入 dp[i][1], 求出 dp[i][i], 其式是
dp[i][i] = p21^(i) * dp[i][i] + Σ(p21^(i-x) * c[x])
然后就可以把 dp[i][] 的值都求出来,最后的答案就是dp[n][m]
 /*
.
';;;;;.
'!;;;;;;!;`
'!;|&#@|;;;;!:
`;;!&####@|;;;;!:
.;;;!&@$$%|!;;;;;;!'.`:::::'.
'!;;;;;;;;!$@###&|;;|%!;!$|;;;;|&&;.
:!;;;;!$@&%|;;;;;;;;;|!::!!:::;!$%;!$%` '!%&#########@$!:.
;!;;!!;;;;;|$$&@##$;;;::'''''::;;;;|&|%@$|;;;;;;;;;;;;;;;;!$;
;|;;;;;;;;;;;;;;;;;;!%@#####&!:::;!;;;;;;;;;;!&####@%!;;;;$%`
`!!;;;;;;;;;;!|%%|!!;::;;|@##%|$|;;;;;;;;;;;;!|%$#####%;;;%&;
:@###&!:;;!!||%%%%%|!;;;;;||;;;;||!$&&@@%;;;;;;;|$$##$;;;%@|
;|::;;;;;;;;;;;;|&&$|;;!$@&$!;;;;!;;;;;;;;;;;;;;;;!%|;;;%@%.
`!!;;;;;;;!!!!;;;;;$@@@&&&&&@$!;!%|;;;;!||!;;;;;!|%%%!;;%@|.
%&&$!;;;;;!;;;;;;;;;;;|$&&&&&&&&&@@%!%%;!||!;;;;;;;;;;;;;$##!
!%;;;;;;!%!:;;;;;;;;;;!$&&&&&&&&&&@##&%|||;;;!!||!;;;;;;;$&:
':|@###%;:;;;;;;;;;;;;!%$&&&&&&@@$!;;;;;;;!!!;;;;;%&!;;|&%.
!@|;;;;;;;;;;;;;;;;;;|%|$&&$%&&|;;;;;;;;;;;;!;;;;;!&@@&'
.:%#&!;;;;;;;;;;;;;;!%|$$%%&@%;;;;;;;;;;;;;;;;;;;!&@:
.%$;;;;;;;;;;;;;;;;;;|$$$$@&|;;;;;;;;;;;;;;;;;;;;%@%.
!&!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;|@#;
`%$!;;;;;;;;;;;$@|;;;;;;;;;;;;;;;;;;;;;;;;!%$@#@|.
.|@%!;;;;;;;;;!$&%||;;;;;;;;;;;;;;;;;!%$$$$$@#|.
;&$!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;%#####|.
|##$|!;;;;;;::'':;;;;;;;;;;;;;!%$$$@#@;
;@&|;;;;;;;::'''''':;;;;;;;|$&@###@|`
.%##@|;;;;:::''''''''''::;!%&##$'
`$##@$$@@&|!!;;;:'''''::::;;;;;|&#%.
;&@##&$%!;;;;;;::''''''''::;!|%$@#@&@@:
.%@&$$|;;;;;;;;;;:'''':''''::;;;%@#@@#%.
:@##@###@$$$$$|;;:'''':;;!!;;;;;;!$#@@#$;`
`%@$$|;;;;;;;;:'''''''::;;;;|%$$|!!&###&'
|##&%!;;;;;::''''''''''''::;;;;;;;!$@&:`!'
:;!@$|;;;;;;;::''''''''''':;;;;;;;;!%&@$: !@#$'
|##@@&%;;;;;::''''''''':;;;;;;;!%&@#@$%: '%%!%&;
|&%!;;;;;;;%$!:''''''':|%!;;;;;;;;|&@%||` '%$|!%&;
|@%!;;!!;;;||;:'''''':;%$!;;;;!%%%&#&%$&: .|%;:!&%`
!@&%;;;;;;;||;;;:''::;;%$!;;;;;;;|&@%;!$; `%&%!!$&:
'$$|;!!!!;;||;;;;;;;;;;%%;;;;;;;|@@|!$##; !$!;:!$&:
|#&|;;;;;;!||;;;;;;;;!%|;;;;!$##$;;;;|%' `%$|%%;|&$'
|&%!;;;;;;|%;;;;;;;;$$;;;;;;|&&|!|%&&; .:%&$!;;;:!$@!
`%#&%!!;;;;||;;;;;!$&|;;;!%%%@&!;;;!!;;;|%!;;%@$!%@!
!&!;;;;;;;;;||;;%&!;;;;;;;;;%@&!;;!&$;;;|&%;;;%@%`
'%|;;;;;;;;!!|$|%&%;;;;;;;;;;|&#&|!!||!!|%$@@|'
.!%%&%'`|$; :|$#%|@#&;%#%.
*/
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout) typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 2e3 + ;
const int maxm = 1e5 + ;
const int mod = 1e9 + ;
const ll INF = 1e18 + ;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-;
using namespace std; int n, m, k;
int cas, tol, T; double c[maxn];
double pp[maxn];
double dp[maxn][maxn]; int main() {
double p1, p2, p3, p4;
while(~scanf("%d%d%d%lf%lf%lf%lf", &n, &m, &k, &p1, &p2, &p3, &p4)) {
if(fabs(p4) <= eps) {
printf("0.00000\n");
continue;
}
double p21 = p2 / ( - p1);
double p31 = p3 / ( - p1);
double p41 = p4 / ( - p1);
pp[] = 1.0;
for(int i=; i<=n; i++)
pp[i] = pp[i-] * p21;
dp[][] = p41 / ( - p21);
c[] = p41;
for(int i=; i<=n; i++) {
for(int j=; j<=i; j++) {
if(j == ) c[j] = p41;
else if(j <= k) c[j] = p31 * dp[i-][j-] + p41;
else c[j] = p31 * dp[i-][j-];
}
double tmp = ;
for(int j=; j<=i; j++) {
tmp += pp[i-j] * c[j];
}
dp[i][i] = tmp / (1.0 - pp[i]);
dp[i][] = p21 * dp[i][i] + c[];
for(int j=; j<i; j++) {
dp[i][j] = p21 * dp[i][j-] + c[j];
}
}
for(int i=; i<=n; i++) {
for(int j=; j<=i; j++) {
printf("%f%c", dp[i][j], j==i ? '\n' : ' ');
}
}
printf("%.5f\n", dp[n][m]);
}
return ;
}

Activation HDU - 4089(概率dp)的更多相关文章

  1. hdu 4089 概率dp

    /* 题目大意:注册一款游戏需要排队,一共有四种事件: 1.注册失败,队列不变,概率为p1 2.注册过程中断开连接,正在注册的人排到队列的末尾,概率为p2 3.注册成功,移出队列,概率为p3 4.服务 ...

  2. HDU 4599 概率DP

    先推出F(n)的公式: 设dp[i]为已经投出连续i个相同的点数平均还要都多少次才能到达目标状态. 则有递推式dp[i] = 1/6*(1+dp[i+1]) + 5/6*(1+dp[1]).考虑当前这 ...

  3. HDU 5001 概率DP || 记忆化搜索

    2014 ACM/ICPC Asia Regional Anshan Online 给N个点,M条边组成的图,每一步能够从一个点走到相邻任一点,概率同样,问D步后没走到过每一个点的概率 概率DP  測 ...

  4. hdu 3853 概率dp

    题意:在一个R*C的迷宫里,一个人在最左上角,出口在右下角,在每个格子上,该人有几率向下,向右或者不动,求到出口的期望 现在对概率dp有了更清楚的认识了 设dp[i][j]表示(i,j)到(R,C)需 ...

  5. HDU 4815 概率dp,背包

    Little Tiger vs. Deep Monkey Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K ( ...

  6. hdu 4050(概率dp)

    算是挺简单的一道概率dp了,如果做了前面的聪聪于可可的话,这题不需要什么预处理,直接概率dp就行了... #include <stdio.h> #include <stdlib.h& ...

  7. Activation HDU - 4089 (概率DP)

    kuangbin的博客 强 #include <bits/stdc++.h> using namespace std; const int MAXN = 2005; const doubl ...

  8. HDU 4405 (概率DP)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4405 题目大意:飞行棋.如果格子不是飞行点,扔骰子前进.否则直接飞到目标点.每个格子是唯一的飞行起点 ...

  9. hdu 4336 概率dp + 状压

    hdu 4336 小吃包装袋里面有随机赠送一些有趣的卡片,如今你想收集齐 N 张卡片.每张卡片在食品包装袋里出现的概率是p[i] ( Σp[i] <= 1 ), 问你收集全部卡片所需购买的食品数 ...

随机推荐

  1. MUI ios下用video标签默认全屏播放

    前几天用Hbuilder+MUI做了个应用,里边用到<video>标签,在Android下正常,但是在苹果手机老是默认全屏播放. 解决办法: 首先在video标签加上playsinline ...

  2. java线程介绍

    文章讲解要点 1.线程创建几种方式2.线程常见设置方法,包括优先级.优先级休眠.停止等3.多线程间的数据交互与锁机制4.项目源码下载   线程介绍.png 一.线程创建方式 常见的线程创建方法以下三种 ...

  3. Vue一个案例引发的递归组件的使用

    今天我们继续使用 Vue 的撸我们的实战项目,只有在实战中我们才会领悟更多,光纸上谈兵然并卵,继上篇我们的<Vue一个案例引发的动态组件与全局事件绑定总结> 之后,今天来聊一聊我们如何在项 ...

  4. 常用SMTP地址

    1.QQ邮箱(mail.qq.com) POP3服务器地址:pop.qq.com(端口:110) SMTP服务器地址:smtp.qq.com(端口:25) 2.搜狐邮箱(sohu.com): POP3 ...

  5. sqlbulkcopy 批量插入数据

    批量插入 Datetable数据  通过sqlbulkcopy 插入1百万条数据 用时 10秒钟 (有兴趣的小伙伴可以去测试) /// <summary> /// /// </sum ...

  6. 我认知的javascript之函数调用

    今天刚好周六没事,又由于工作的原因导致早上醒来就睡不着,无聊之下,就想到了 js 的function调用问题.当然,网上也是对javascript的一些事情说得很透了,但我觉得还是有必要把自己的想法说 ...

  7. jpa 分页

    public Page<Stability> testPager(){ Pageable pageable = new PageRequest(1, 10, Sort.Direction. ...

  8. 跳跳棋[LCA+二分查找]-洛谷1852

    传送门 这真是一道神仙题 虽然我猜到了这是一道LCA的题 但是... 第一遍看题,我是怎么也没想到能和树形图扯上关系 并且用上LCA 但其实其实和上一道lightoj上的那道题很类似 只不过那时一道很 ...

  9. Shiro学习(一)——Shiro简介

    Apache Shiro是Java的一个安全框架.目前,使用Apache Shiro的人越来越多,因为它相当简单,对比Spring Security,可能没有Spring Security做的功能强大 ...

  10. 3.HttpSession

    1 HttpSession概述 1.1 什么是HttpSesssion javax.servlet.http.HttpSession接口表示一个会话,我们可以把一个会话内需要共享的数据保存到HttSe ...