light oj1170 - Counting Perfect BST卡特兰数
BST is the acronym for Binary Search Tree. A BST is a tree data structure with the following properties.
i) Each BST contains a root node and the root may have zero, one or two children. Each of the children themselves forms the root of another BST. The two children are classically referred to as left child and right child.
ii) The left subtree, whose root is the left children of a root, contains all elements with key values less than or equal to that of the root.
iii) The right subtree, whose root is the right children of a root, contains all elements with key values greater than that of the root.
An integer m is said to be a perfect power if there exists integer x > 1 and y > 1 such that m = xy. First few perfect powers are {4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, ...}. Now given two integer a and b we want to construct BST using all perfect powers between a and b, where each perfect power will form the key value of a node.
Now, we can construct several BSTs out of the perfect powers. For example, given a = 1 and b = 10, perfect powers between a and b are 4, 8, 9. Using these we can form the following five BSTs.
4 4 8 9 9
\ \ / \ / /
8 9 4 9 4 8
\ / \ /
9 8 8 4
In this problem, given a and b, you will have to determine the total number of BSTs that can be formed using perfect powers between a and b.
Input
Input starts with an integer T (≤ 20000), denoting the number of test cases.
Each case of input contains two integers: a and b (1 ≤ a ≤ b ≤ 1010, b - a ≤ 106) as defined in the problem statement.
Output
For each case, print the case number and the total number of distinct BSTs that can be formed by the perfect powers between a and b. Output the result modulo 100000007.
Sample Input |
Output for Sample Input |
|
4 1 4 5 10 1 10 1 3 |
Case 1: 1 Case 2: 2 Case 3: 5 Case 4: 0 |
分析:先筛选出a, b间的完美幂,然后就是求卡特兰数了,既可以用递推,也可以用求逆元的方法。
代码:
#include<cstdio>
#include<cmath>
#include<cstring>
#include<set>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#define N 111111
#define mod 100000007
typedef long long ll;
using namespace std;
ll num[N];
ll d[1111];
int k;
void init()
{
for(ll i = 2; i * i < 10000000000L; ++i)
{
for(int j = 2; ; ++j)
{
if(pow(i, j) > 10000000000L)
break;
num[k++] = pow(i, j);
}
}
sort(num, num + k);
k = unique(num, num + k) - num;
/*在STL中unique函数是一个去重函数, unique的功能是去除相邻的重复元素(只保留一个),
其实它并不真正把重复的元素删除,是把重复的元素移到后面去了,然后依然保存到了原数组中,
然后 返回去重后最后一个元素的地址,因为unique去除的是相邻的重复元素,所以一般用之前都会要排一下序。
*/
memset(d, 0, sizeof(d));
d[0] = 1;
d[1] = 1;
for(int i = 2; i < 1111; i++)
{
for(int j = 1; j <= i; j++)
{
d[i] += d[i - j] * d[j-1];
d[i] %= mod;
}
/*Catalan数的定义
令h(0)=1,h(1)=1,Catalan数满足递归式:h(n) = h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)*h(0) (n>=2)
该递推关系的解为:h(n) = C(2n,n)/(n+1),n=0,1,2,3,... (其中C(2n,n)表示2n个物品中取n个的组合数)
*/
///卡特兰数应用链接:http://www.cnblogs.com/yaoyueduzhen/p/5456490.html
}
}
int getcnt(ll a, ll b)
{
int t1 = upper_bound(num, num+k, b) - num;///返回一个非递减序列中的第一个大于val的位置
int t2 = lower_bound(num, num+k, a) - num;///返回一个非递减序列中的第一个大于等于值val的位置
return t1 - t2;
}
int main(void)
{
int T, cas;
ll a, b;
scanf("%d", &T);
cas = 0;
init();
d[0] = 0;
while(T--)
{
scanf("%lld%lld", &a, &b);
cas++;
printf("Case %d: %lld\n", cas, d[getcnt(a, b)]);
}
}
light oj1170 - Counting Perfect BST卡特兰数的更多相关文章
- 1170 - Counting Perfect BST
1170 - Counting Perfect BST PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 3 ...
- LightOJ - 1170 - Counting Perfect BST(卡特兰数)
链接: https://vjudge.net/problem/LightOJ-1170 题意: BST is the acronym for Binary Search Tree. A BST is ...
- LightOJ1170 - Counting Perfect BST(卡特兰数)
题目大概就是求一个n个不同的数能构造出几种形态的二叉排序树. 和另一道经典题目n个结点二叉树不同形态的数量一个递推解法,其实这两个问题的解都是是卡特兰数. dp[n]表示用n个数的方案数 转移就枚举第 ...
- LightOj 1170 - Counting Perfect BST (折半枚举 + 卡特兰树)
题目链接: http://www.lightoj.com/volume_showproblem.php?problem=1170 题目描述: 给出一些满足完美性质的一列数(x > 1 and y ...
- HDOJ/HDU 1133 Buy the Ticket(数论~卡特兰数~大数~)
Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...
- 【高精度练习+卡特兰数】【Uva1133】Buy the Ticket
Buy the Ticket Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
- Buy the Ticket(卡特兰数+递推高精度)
Buy the Ticket Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- Buy the Ticket HDU 1133 卡特兰数应用+Java大数
Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...
- [LeetCode系列]卡特兰数(Catalan Number) 在求解独特二叉搜寻树(Unique Binary Search Tree)中的应用分析
本文原题: LeetCode. 给定 n, 求解独特二叉搜寻树 (binary search trees) 的个数. 什么是二叉搜寻树? 二叉查找树(Binary Search Tree),或者是一棵 ...
随机推荐
- 树上对抗搜索 - 树形dp
Alice and Bob are going on a trip. Alice is a lazy girl who wants to minimize the total travelling d ...
- python中常⽤的excel模块库
python中常用的excel模块库&安装方法 openpyxl openpyxl是⼀个Python库,用于读取/写⼊Excel 2010 xlsx / xlsm / xltx / xltm⽂ ...
- Nginx作为负载均衡——实战演练
配置语法 Syntax:upstream name {...} Default:—— Context:http 演示 准备两台虚拟主机192.168.96.188.192.168.96.188 在18 ...
- [bzoj4011] [洛谷P3244] [HNOI2015] 落忆枫音
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂--我们也 ...
- 02--java--环境搭建
第一步,下载JDK 去ORACLE官网http://www.oracle.com下载 有安装版和绿色版,安装版一路下一步,绿色版解压缩压缩包就行了 安装版直接自动配置环境变量,绿色版需要自己配置环境变 ...
- ES6笔记分享 part 1
ECMAScript ES6 从一脸懵逼到灵活运用 var let const var let const 的比较 声明与赋值 var声明的变量是可以重新赋值的,也可以重复声明 let和const声明 ...
- Python3实现发送邮件和发送短信验证码
Python3实现发送邮件和发送短信验证码 Python3实现发送邮件: import smtplib from email.mime.text import MIMEText from email. ...
- 深入理解ClassLoader
深入理解ClassLoader ClassLoader 作用 负责将 Class 加载到 JVM 中 ClassLoader主要对类的请求提供服务,当JVM需要某类时,它根据名称向ClassLoade ...
- Vue使用better-scroll左右菜单联动
说明 最近想做一个vue商城小项目,练习一下vue的语法,刚刚好碰到了需要左右菜单实现联动,因此就接触了 better-scroll. github地址 中文文档. 代码 页面结构以及数据 //页面结 ...
- NetModular 新年第一更以及升级指南(打造简单易用的.Net Core模块化快速开发框架~)
先给大家拜个晚年,祝大家身体健康,远离肺炎~ NetModular开源已有一年,在这一年收到了很多建议,框架也变得越来越完善.这次更新包括了从去年年尾到现在所做的更改,感觉更改的内容还是蛮多的,所以记 ...