1170 - Counting Perfect BST

BST is the acronym for Binary Search Tree. A BST is a tree data structure with the following properties.

i)        Each BST contains a root node and the root may have zero, one or two children. Each of the children themselves forms the root of another BST. The two children are classically referred to as left child and right child.

ii)      The left subtree, whose root is the left children of a root, contains all elements with key values less than or equal to that of the root.

iii)    The right subtree, whose root is the right children of a root, contains all elements with key values greater than that of the root.

An integer m is said to be a perfect power if there exists integer x > 1 and y > 1 such that m = xy. First few perfect powers are {4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, ...}. Now given two integer a and b we want to construct BST using all perfect powers between a and b, where each perfect power will form the key value of a node.

Now, we can construct several BSTs out of the perfect powers. For example, given a = 1 and b = 10, perfect powers between a and b are 4, 8, 9. Using these we can form the following five BSTs.

4           4         8          9         9

  \          \      / \      /         /

    8          9   4     9   4         8

      \      /                 \      /

9   8                     8   4

In this problem, given a and b, you will have to determine the total number of BSTs that can be formed using perfect powers between a and b.

Input

Input starts with an integer T (≤ 20000), denoting the number of test cases.

Each case of input contains two integers: a and b (1 ≤ a ≤ b ≤ 1010, b - a ≤ 106) as defined in the problem statement.

Output

For each case, print the case number and the total number of distinct BSTs that can be formed by the perfect powers between a and b. Output the result modulo 100000007.

Sample Input

Output for Sample Input

4

1 4

5 10

1 10

1 3

Case 1: 1

Case 2: 2

Case 3: 5

Case 4: 0

分析:先筛选出a, b间的完美幂,然后就是求卡特兰数了,既可以用递推,也可以用求逆元的方法。

代码:

#include<cstdio>
#include<cmath>
#include<cstring>
#include<set>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#define N 111111
#define mod 100000007
typedef long long ll;
using namespace std;

ll num[N];
ll d[1111];
int k;

void init()
{
for(ll i = 2; i * i < 10000000000L; ++i)
{
for(int j = 2; ; ++j)
{
if(pow(i, j) > 10000000000L)
break;

num[k++] = pow(i, j);
}
}
sort(num, num + k);

k = unique(num, num + k) - num;
/*在STL中unique函数是一个去重函数, unique的功能是去除相邻的重复元素(只保留一个),
其实它并不真正把重复的元素删除,是把重复的元素移到后面去了,然后依然保存到了原数组中,
然后 返回去重后最后一个元素的地址,因为unique去除的是相邻的重复元素,所以一般用之前都会要排一下序。
*/
memset(d, 0, sizeof(d));
d[0] = 1;
d[1] = 1;

for(int i = 2; i < 1111; i++)
{
for(int j = 1; j <= i; j++)
{
d[i] += d[i - j] * d[j-1];
d[i] %= mod;
}
/*Catalan数的定义

 令h(0)=1,h(1)=1,Catalan数满足递归式:h(n) = h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)*h(0) (n>=2)

 该递推关系的解为:h(n) = C(2n,n)/(n+1),n=0,1,2,3,... (其中C(2n,n)表示2n个物品中取n个的组合数)
*/
///卡特兰数应用链接:http://www.cnblogs.com/yaoyueduzhen/p/5456490.html

}
}
int getcnt(ll a, ll b)
{
int t1 = upper_bound(num, num+k, b) - num;///返回一个非递减序列中的第一个大于val的位置
int t2 = lower_bound(num, num+k, a) - num;///返回一个非递减序列中的第一个大于等于值val的位置
return t1 - t2;
}
int main(void)
{
int T, cas;

ll a, b;
scanf("%d", &T);

cas = 0;
init();

d[0] = 0;
while(T--)
{

scanf("%lld%lld", &a, &b);
cas++;

printf("Case %d: %lld\n", cas, d[getcnt(a, b)]);
}
}

light oj1170 - Counting Perfect BST卡特兰数的更多相关文章

  1. 1170 - Counting Perfect BST

    1170 - Counting Perfect BST   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 3 ...

  2. LightOJ - 1170 - Counting Perfect BST(卡特兰数)

    链接: https://vjudge.net/problem/LightOJ-1170 题意: BST is the acronym for Binary Search Tree. A BST is ...

  3. LightOJ1170 - Counting Perfect BST(卡特兰数)

    题目大概就是求一个n个不同的数能构造出几种形态的二叉排序树. 和另一道经典题目n个结点二叉树不同形态的数量一个递推解法,其实这两个问题的解都是是卡特兰数. dp[n]表示用n个数的方案数 转移就枚举第 ...

  4. LightOj 1170 - Counting Perfect BST (折半枚举 + 卡特兰树)

    题目链接: http://www.lightoj.com/volume_showproblem.php?problem=1170 题目描述: 给出一些满足完美性质的一列数(x > 1 and y ...

  5. HDOJ/HDU 1133 Buy the Ticket(数论~卡特兰数~大数~)

    Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...

  6. 【高精度练习+卡特兰数】【Uva1133】Buy the Ticket

    Buy the Ticket Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  7. Buy the Ticket(卡特兰数+递推高精度)

    Buy the Ticket Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...

  8. Buy the Ticket HDU 1133 卡特兰数应用+Java大数

    Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...

  9. [LeetCode系列]卡特兰数(Catalan Number) 在求解独特二叉搜寻树(Unique Binary Search Tree)中的应用分析

    本文原题: LeetCode. 给定 n, 求解独特二叉搜寻树 (binary search trees) 的个数. 什么是二叉搜寻树? 二叉查找树(Binary Search Tree),或者是一棵 ...

随机推荐

  1. 递推 dp

    工大要建新教学楼了,一座很高很高的楼,它有n层.学校为了减少排电梯的队伍,建造了好多好多电梯,共有m个.为了让电梯有序,学校给每个电梯设定了独特的可停楼层,如 x1 x2 y1 y2 表示,x1楼层到 ...

  2. VMware Workstation CentOS7 Linux 学习之路(2)--.net core环境安装

    1.为了安装.NET,需要注册微软签名密钥和添加微软相关的支持.这个操作每台机器只能做一次. Add the dotnet product feed(其实就是向微软提交投名状,表示我这台服务器要用co ...

  3. Linux系统上安装配置MAVEN

    1,下载maven 首先进入maven下载目录:http://maven.apache.org/download.cgi 2,上传maven到linux系统 以下操作路径都是本人习惯,目录可以随意更改 ...

  4. python 学习爬虫教程~

    思路:: (本文没有用xpath定位,xpath需要导入第三方库   from lxml import etree) 1.首先通过urllib类获取到网页的所有内容 2.通过partition获取其中 ...

  5. python+opencv中最近出现的一些变化( OpenCV 官方的 Python tutorial目前好像还没有改过来?) 记一次全景图像的拼接

    最近在学习过程中发现opencv有了很多变动, OpenCV 官方的 Python tutorial目前好像还没有改过来,导致大家在学习上面都出现了一些问题,现在做一个小小的罗列,希望对大家有用 做的 ...

  6. js多图预览及上传功能

    <%-- Created by IntelliJ IDEA. User: Old Zhang Date: 2018/12/27 Time: 11:17 To change this templa ...

  7. 【5min+】帮我排个队,谢谢。await Task.Yield()

    系列介绍 [五分钟的dotnet]是一个利用您的碎片化时间来学习和丰富.net知识的博文系列.它所包含了.net体系中可能会涉及到的方方面面,比如C#的小细节,AspnetCore,微服务中的.net ...

  8. [bzoj4825] [loj#2018] [Hnoi2017] 单旋

    Description \(H\) 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(\(splay\))是一种数据 结构,因为代码好写,功能多,效率高,掌握这种数据结构 ...

  9. epel-release的卸载重装

    1.yum remove epel-release 2.清空epel目录:rm -rf /var/cache/yum/x86_64/6/epel/ 3.安装,yum install  epel-rel ...

  10. 当vps服务器被墙,如果用xshell连接

    当然你的被墙了,肯定是访问不了,你得去找一个新的可用的节点去访问,在xshell里面设置代理就能连接上.上图. 然后是两个不同的结点 鼠标放在小火箭上面就能显示