light oj1170 - Counting Perfect BST卡特兰数
BST is the acronym for Binary Search Tree. A BST is a tree data structure with the following properties.
i) Each BST contains a root node and the root may have zero, one or two children. Each of the children themselves forms the root of another BST. The two children are classically referred to as left child and right child.
ii) The left subtree, whose root is the left children of a root, contains all elements with key values less than or equal to that of the root.
iii) The right subtree, whose root is the right children of a root, contains all elements with key values greater than that of the root.
An integer m is said to be a perfect power if there exists integer x > 1 and y > 1 such that m = xy. First few perfect powers are {4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, ...}. Now given two integer a and b we want to construct BST using all perfect powers between a and b, where each perfect power will form the key value of a node.
Now, we can construct several BSTs out of the perfect powers. For example, given a = 1 and b = 10, perfect powers between a and b are 4, 8, 9. Using these we can form the following five BSTs.
4 4 8 9 9
\ \ / \ / /
8 9 4 9 4 8
\ / \ /
9 8 8 4
In this problem, given a and b, you will have to determine the total number of BSTs that can be formed using perfect powers between a and b.
Input
Input starts with an integer T (≤ 20000), denoting the number of test cases.
Each case of input contains two integers: a and b (1 ≤ a ≤ b ≤ 1010, b - a ≤ 106) as defined in the problem statement.
Output
For each case, print the case number and the total number of distinct BSTs that can be formed by the perfect powers between a and b. Output the result modulo 100000007.
Sample Input |
Output for Sample Input |
4 1 4 5 10 1 10 1 3 |
Case 1: 1 Case 2: 2 Case 3: 5 Case 4: 0 |
分析:先筛选出a, b间的完美幂,然后就是求卡特兰数了,既可以用递推,也可以用求逆元的方法。
代码:
#include<cstdio>
#include<cmath>
#include<cstring>
#include<set>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#define N 111111
#define mod 100000007
typedef long long ll;
using namespace std;
ll num[N];
ll d[1111];
int k;
void init()
{
for(ll i = 2; i * i < 10000000000L; ++i)
{
for(int j = 2; ; ++j)
{
if(pow(i, j) > 10000000000L)
break;
num[k++] = pow(i, j);
}
}
sort(num, num + k);
k = unique(num, num + k) - num;
/*在STL中unique函数是一个去重函数, unique的功能是去除相邻的重复元素(只保留一个),
其实它并不真正把重复的元素删除,是把重复的元素移到后面去了,然后依然保存到了原数组中,
然后 返回去重后最后一个元素的地址,因为unique去除的是相邻的重复元素,所以一般用之前都会要排一下序。
*/
memset(d, 0, sizeof(d));
d[0] = 1;
d[1] = 1;
for(int i = 2; i < 1111; i++)
{
for(int j = 1; j <= i; j++)
{
d[i] += d[i - j] * d[j-1];
d[i] %= mod;
}
/*Catalan数的定义
令h(0)=1,h(1)=1,Catalan数满足递归式:h(n) = h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)*h(0) (n>=2)
该递推关系的解为:h(n) = C(2n,n)/(n+1),n=0,1,2,3,... (其中C(2n,n)表示2n个物品中取n个的组合数)
*/
///卡特兰数应用链接:http://www.cnblogs.com/yaoyueduzhen/p/5456490.html
}
}
int getcnt(ll a, ll b)
{
int t1 = upper_bound(num, num+k, b) - num;///返回一个非递减序列中的第一个大于val的位置
int t2 = lower_bound(num, num+k, a) - num;///返回一个非递减序列中的第一个大于等于值val的位置
return t1 - t2;
}
int main(void)
{
int T, cas;
ll a, b;
scanf("%d", &T);
cas = 0;
init();
d[0] = 0;
while(T--)
{
scanf("%lld%lld", &a, &b);
cas++;
printf("Case %d: %lld\n", cas, d[getcnt(a, b)]);
}
}
light oj1170 - Counting Perfect BST卡特兰数的更多相关文章
- 1170 - Counting Perfect BST
1170 - Counting Perfect BST PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 3 ...
- LightOJ - 1170 - Counting Perfect BST(卡特兰数)
链接: https://vjudge.net/problem/LightOJ-1170 题意: BST is the acronym for Binary Search Tree. A BST is ...
- LightOJ1170 - Counting Perfect BST(卡特兰数)
题目大概就是求一个n个不同的数能构造出几种形态的二叉排序树. 和另一道经典题目n个结点二叉树不同形态的数量一个递推解法,其实这两个问题的解都是是卡特兰数. dp[n]表示用n个数的方案数 转移就枚举第 ...
- LightOj 1170 - Counting Perfect BST (折半枚举 + 卡特兰树)
题目链接: http://www.lightoj.com/volume_showproblem.php?problem=1170 题目描述: 给出一些满足完美性质的一列数(x > 1 and y ...
- HDOJ/HDU 1133 Buy the Ticket(数论~卡特兰数~大数~)
Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...
- 【高精度练习+卡特兰数】【Uva1133】Buy the Ticket
Buy the Ticket Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
- Buy the Ticket(卡特兰数+递推高精度)
Buy the Ticket Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- Buy the Ticket HDU 1133 卡特兰数应用+Java大数
Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...
- [LeetCode系列]卡特兰数(Catalan Number) 在求解独特二叉搜寻树(Unique Binary Search Tree)中的应用分析
本文原题: LeetCode. 给定 n, 求解独特二叉搜寻树 (binary search trees) 的个数. 什么是二叉搜寻树? 二叉查找树(Binary Search Tree),或者是一棵 ...
随机推荐
- 【 Tomcat 】tomcat8.0 基本参数调优配置-----(2)
Tomcat 的缺省配置是不能稳定长期运行的,也就是不适合生产环境,它会死机,让你不断重新启动,甚至在午夜时分唤醒你.对于操作系统优化来说,是尽可能的增大可使用的内存容量.提高CPU 的频率,保证文件 ...
- Activiti定时任务
Activiti定时任务 作者:Jesai 傻逼一样的去坚持,就会有牛逼的结果 情景: 某公司有一个OA系统,审批环节是经理.有一天,经理出差了,然后下面突然有一份决定公司某个重大项目是否能顺利中标的 ...
- MongoDB聚合(aggregate)
一.基础 1.什么是聚合? 聚合是基于数据处理的聚合管道,每个文档通过一个有多个阶段(stage)组成的管道可以对每个阶段的管道进行分组.过滤等功能,然后经过一系列的处理,输出相应的结果 db.集合名 ...
- python-review01
# 1.使用while循环输出 1 2 3 4 5 6 8 9 10 count = 0 while count < 10: count += 1 if count == 7: continue ...
- PSP第一次总结
项目计划总结 周活动总结表 姓名:王金萱 ...
- 用Kolla在阿里云部署10节点高可用OpenStack
为展现 Kolla 的真正实力,我在阿里云使用 Ansible 自动创建 10 台虚机,部署一套多节点高可用 OpenStack 集群! 前言 上次 Kolla 已经表示了要打 10 个的愿望,这次我 ...
- 【java面试】算法篇
1.冒泡排序 /** * 冒泡排序 * 比较相邻的元素.如果第一个比第二个大,就交换他们两个. * 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的数. ...
- RainbowPlan-Alpha版本发布1
博客介绍 这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/GeographicInformationScience/ 这个作业要求在哪里 https:// ...
- 对于Python中的字节串bytes和字符串以及转义字符的新的认识
事情的起因是之前同学叫我帮他用Python修改一个压缩包的二进制内容用来做fuzz,根据他的要求,把压缩包test.rar以十六进制的方式打开,每次修改其中一个十六进制字符串并保存为一个新的rar用来 ...
- sqli_labs学习笔记(一)Less-38~Less-53
续上,开门见山 堆叠注入,实际上就构成了两条SQL语句 http://43.247.91.228:84/Less-38/?id=1' union select 1,2,3 --+ //未报错 h ...