1170 - Counting Perfect BST

BST is the acronym for Binary Search Tree. A BST is a tree data structure with the following properties.

i)        Each BST contains a root node and the root may have zero, one or two children. Each of the children themselves forms the root of another BST. The two children are classically referred to as left child and right child.

ii)      The left subtree, whose root is the left children of a root, contains all elements with key values less than or equal to that of the root.

iii)    The right subtree, whose root is the right children of a root, contains all elements with key values greater than that of the root.

An integer m is said to be a perfect power if there exists integer x > 1 and y > 1 such that m = xy. First few perfect powers are {4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, ...}. Now given two integer a and b we want to construct BST using all perfect powers between a and b, where each perfect power will form the key value of a node.

Now, we can construct several BSTs out of the perfect powers. For example, given a = 1 and b = 10, perfect powers between a and b are 4, 8, 9. Using these we can form the following five BSTs.

4           4         8          9         9

  \          \      / \      /         /

    8          9   4     9   4         8

      \      /                 \      /

9   8                     8   4

In this problem, given a and b, you will have to determine the total number of BSTs that can be formed using perfect powers between a and b.

Input

Input starts with an integer T (≤ 20000), denoting the number of test cases.

Each case of input contains two integers: a and b (1 ≤ a ≤ b ≤ 1010, b - a ≤ 106) as defined in the problem statement.

Output

For each case, print the case number and the total number of distinct BSTs that can be formed by the perfect powers between a and b. Output the result modulo 100000007.

Sample Input

Output for Sample Input

4

1 4

5 10

1 10

1 3

Case 1: 1

Case 2: 2

Case 3: 5

Case 4: 0

分析:先筛选出a, b间的完美幂,然后就是求卡特兰数了,既可以用递推,也可以用求逆元的方法。

代码:

#include<cstdio>
#include<cmath>
#include<cstring>
#include<set>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#define N 111111
#define mod 100000007
typedef long long ll;
using namespace std;

ll num[N];
ll d[1111];
int k;

void init()
{
for(ll i = 2; i * i < 10000000000L; ++i)
{
for(int j = 2; ; ++j)
{
if(pow(i, j) > 10000000000L)
break;

num[k++] = pow(i, j);
}
}
sort(num, num + k);

k = unique(num, num + k) - num;
/*在STL中unique函数是一个去重函数, unique的功能是去除相邻的重复元素(只保留一个),
其实它并不真正把重复的元素删除,是把重复的元素移到后面去了,然后依然保存到了原数组中,
然后 返回去重后最后一个元素的地址,因为unique去除的是相邻的重复元素,所以一般用之前都会要排一下序。
*/
memset(d, 0, sizeof(d));
d[0] = 1;
d[1] = 1;

for(int i = 2; i < 1111; i++)
{
for(int j = 1; j <= i; j++)
{
d[i] += d[i - j] * d[j-1];
d[i] %= mod;
}
/*Catalan数的定义

 令h(0)=1,h(1)=1,Catalan数满足递归式:h(n) = h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)*h(0) (n>=2)

 该递推关系的解为:h(n) = C(2n,n)/(n+1),n=0,1,2,3,... (其中C(2n,n)表示2n个物品中取n个的组合数)
*/
///卡特兰数应用链接:http://www.cnblogs.com/yaoyueduzhen/p/5456490.html

}
}
int getcnt(ll a, ll b)
{
int t1 = upper_bound(num, num+k, b) - num;///返回一个非递减序列中的第一个大于val的位置
int t2 = lower_bound(num, num+k, a) - num;///返回一个非递减序列中的第一个大于等于值val的位置
return t1 - t2;
}
int main(void)
{
int T, cas;

ll a, b;
scanf("%d", &T);

cas = 0;
init();

d[0] = 0;
while(T--)
{

scanf("%lld%lld", &a, &b);
cas++;

printf("Case %d: %lld\n", cas, d[getcnt(a, b)]);
}
}

light oj1170 - Counting Perfect BST卡特兰数的更多相关文章

  1. 1170 - Counting Perfect BST

    1170 - Counting Perfect BST   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 3 ...

  2. LightOJ - 1170 - Counting Perfect BST(卡特兰数)

    链接: https://vjudge.net/problem/LightOJ-1170 题意: BST is the acronym for Binary Search Tree. A BST is ...

  3. LightOJ1170 - Counting Perfect BST(卡特兰数)

    题目大概就是求一个n个不同的数能构造出几种形态的二叉排序树. 和另一道经典题目n个结点二叉树不同形态的数量一个递推解法,其实这两个问题的解都是是卡特兰数. dp[n]表示用n个数的方案数 转移就枚举第 ...

  4. LightOj 1170 - Counting Perfect BST (折半枚举 + 卡特兰树)

    题目链接: http://www.lightoj.com/volume_showproblem.php?problem=1170 题目描述: 给出一些满足完美性质的一列数(x > 1 and y ...

  5. HDOJ/HDU 1133 Buy the Ticket(数论~卡特兰数~大数~)

    Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...

  6. 【高精度练习+卡特兰数】【Uva1133】Buy the Ticket

    Buy the Ticket Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  7. Buy the Ticket(卡特兰数+递推高精度)

    Buy the Ticket Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...

  8. Buy the Ticket HDU 1133 卡特兰数应用+Java大数

    Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...

  9. [LeetCode系列]卡特兰数(Catalan Number) 在求解独特二叉搜寻树(Unique Binary Search Tree)中的应用分析

    本文原题: LeetCode. 给定 n, 求解独特二叉搜寻树 (binary search trees) 的个数. 什么是二叉搜寻树? 二叉查找树(Binary Search Tree),或者是一棵 ...

随机推荐

  1. DP-01背包 (题)

    nyoj 325   http://acm.nyist.net/JudgeOnline/problem.php?pid=325 zb的生日 时间限制:3000 ms  |  内存限制:65535 KB ...

  2. Java同步与异步

    一.关键字: thread(线程).thread-safe(线程安全).intercurrent(并发的) synchronized(同步的).asynchronized(异步的). volatile ...

  3. python 判断文件的字符编码

    import chardet f = open(file='test1.txt', mode='rb') data = f.read() print(chardet.detect(data))

  4. 异常java.lang.NoSuchMethodError: org.springframework.core.GenericTypeResolver.resolveTypeArguments(Ljava/lang/Class;Ljava/lang/Class;)[Ljava/lang/Class;

    java.lang.NoSuchMethodError: org.springframework.core.GenericTypeResolver.resolveTypeArguments(Ljava ...

  5. EFK教程(5) - ES集群开启用户认证

    基于ES内置及自定义用户实现kibana和filebeat的认证 作者:"发颠的小狼",欢迎转载 目录 ▪ 用途 ▪ 关闭服务 ▪ elasticsearch-修改elastics ...

  6. tensorflow框架

    一.tensorflow的工作流程,实际上它体现出来的是一个”懒性“方法论 (1)构建一个计算图. (2)初始化变量 (3)创建一个会话 (4)在会话中运行图的计算 (5)关闭会话 二.神经网络搭建八 ...

  7. 使用C++进行声明式编程

            声明式编程(英语:Declarative programming)是一种编程范型,与命令式编程相对立.它描述目目标性质,让计算机明白目标,而非流程.声明式编程不用告诉电脑问题领域,从而 ...

  8. 个人第4次作业——alpha项目测试

    这个作业属于哪个课程 http://edu.cnblogs.com/campus/xnsy/GeographicInformationScience 这个作业的要求在哪里 https://www.cn ...

  9. Isx个人第4次作业—Alpha项目测试

    标题 内容 这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/GeographicInformationScience 这个作业要求在哪里 https:// ...

  10. 对于Python中的字节串bytes和字符串以及转义字符的新的认识

    事情的起因是之前同学叫我帮他用Python修改一个压缩包的二进制内容用来做fuzz,根据他的要求,把压缩包test.rar以十六进制的方式打开,每次修改其中一个十六进制字符串并保存为一个新的rar用来 ...