It's a Mod, Mod, Mod, Mod World (类欧几里得模板题
https://vjudge.net/contest/317000#problem/F

#include <iostream>
#include <cstdio>
#include <queue>
#include <algorithm>
#include <cmath>
#include <cstring>
#define inf 2147483647
#define P 998244353
#define p(a) putchar(a)
#define For(i,a,b) for(long long i=a;i<=b;++i) using namespace std;
long long T;
long long n,a,b,c;
struct data{
long long f,g,h;
data calc(long long n,long long a,long long b,long long c){
long long ac = a / c, bc = b / c, m = (a * n + b) / c, n1 = n + , n21 = n * + ;
data d;
if (a == ) {
d.f = bc * n1;
d.g = bc * n * n1 /;
d.h = bc * bc * n1;
return d;
} if (a >= c || b >= c){
d.f = n * n1 / * ac + bc * n1;
d.g = ac * n * n1 * n21 / + bc * n * n1 / ;
d.h = ac * ac * n * n1 * n21 / + bc * bc * n1 + ac * bc * n * n1;
data e = calc(n, a % c, b % c, c);
d.h += e.h + * bc * e.f + * ac * e.g;
d.g += e.g, d.f += e.f;
return d;
} data e = calc(m - , c, c - b - , a);
d.f = n * m - e.f, d.f = d.f;
d.g = m * n * n1 - e.h - e.f, d.g = d.g /;
d.h = n * m * (m + ) - * e.g - * e.f - d.f;
return d;
}
}ans1,ans2; void in(long long &x){
long long y=;char c=getchar();x=;
while(c<''||c>''){if(c=='-')y=-;c=getchar();}
while(c<=''&&c>=''){ x=(x<<)+(x<<)+c-'';c=getchar();}
x*=y;
}
void o(long long x){
if(x<){p('-');x=-x;}
if(x>)o(x/);
p(x%+'');
} signed main(){
in(T);
while(T--){
in(a);in(c);in(n);
ans1=ans1.calc(n,a,,);
ans2=ans2.calc(n,a,,c);
o(ans1.f-c*ans2.f);p('\n');
}
return ;
}
It's a Mod, Mod, Mod, Mod World (类欧几里得模板题的更多相关文章
- Kattis - itsamodmodmodmodworld It's a Mod, Mod, Mod, Mod World (类欧几里得)
题意:计算$\sum\limits_{i=1}^n[(p{\cdot }i)\bmod{q}]$ 类欧模板题,首先作转化$\sum\limits_{i=1}^n[(p{\cdot}i)\bmod{q} ...
- 初等变换求 |A| % Mod & A- % Mod & A* % Mod(模板)
// |A| * A- = A* (伴随矩阵) = 逆矩阵 * 矩阵的值 #include<cstdio> #include<cstring> #include<cstd ...
- 2^x mod n = 1(欧拉定理,欧拉函数,快速幂乘)
2^x mod n = 1 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- x^a=b(mod c)求解x在[0,c-1]上解的个数模板+原根求法
/************************************* 求解x^a=b(mod c) x在[0,c-1]上解的个数模板 输入:1e9>=a,b>=1,1e9>= ...
- 类扩展欧几里得 zquoj 26659
求该式子,因为只有里面mod 外面没mod: 所以先是把前面的等差数列求和,然后再减去模掉的部分: 这是类欧几里得模板题 #include<bits/stdc++.h> #define ...
- ACM模板(持续补完)
1.KMP #include<cstring> #include<algorithm> #include<cstdio> using namespace std; ...
- BZOJ平推计划
学习VFK大神推BZOJ,记录一下学习的东西 1004: burnside:一个置换群的等价计数=(每个置换的置换后等价情况数)/置换总数,每个置换的置换后等价情况数就是置换后没变的数 模意义下的除法 ...
- poj 1061 青蛙的约会 拓展欧几里得模板
// poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...
- 【BZOJ】1407 NOI 2002 荒岛野人Savage
拓展欧几里得入门题 两个野人若要走到同一个洞穴,设他们走了x步,则p[i]*x+c[i]≡p[j]*x+c[j](mod ans),ans即答案: 移项得到(p[i]-p[j])*X+ansY=c[j ...
随机推荐
- Delphi 2010 中的泛型
Delphi 2010 中的泛型 2010已发布很长时间了,口碑还不错,准备用它开发下一项目,但对泛型等新东西的认识还不够,就搜了一下,发现下面这篇文章,还不错,大家一起补补课吧! C++中的模板.C ...
- 解决jqGrid中,当前页一直显示为0的问题
项目中,经常会见到使用 jqGrid 进行一些数据的列表展示,而且使用起来也比较方便.但是有时会遇到一些奇怪的问题,比如前几天我就遇到了在使用 jqGrid 时,当前页一直显示为 0 的问题.下图就是 ...
- tensorflow run()和 eval()
eval()只能用于tf.Tensor类对象,也就是有输出的Operation.对于没有输出的Operation, 可以用.run()或者Session.run() 所以我们训练的时候,对于优化器只能 ...
- 《转》python
转自http://www.cnblogs.com/BeginMan/archive/2013/06/03/3114974.html 1.print语句调用str()函数显示,交互式解释器调用repr( ...
- linux mysql主从复制配置
1.设置主库master的servie-id值并且开启bin-log功能参数vi /etc/my.cnf修改my.cnf的参数:[mysqld]server-id=1 //每一个库的server-id ...
- MD5/SHA1/Hmac_SHA1
1.MD5 #import <CommonCrypto/CommonDigest.h> + (NSString *) md5:(NSString *) input { const char ...
- windows下怎么给ubantu虚拟机全屏的处理
ubantu版本时16.04 windows下窗口太小需要设置 相信很多人在装虚拟机的时候,遇到了窗口过小不能自适应的问题.我也是查了好多资料,都说安装Vmware Tools即可解决,还有说修改分辨 ...
- React和vue的差异和相似地方
React 单向绑定(加插件后,还是可以双向绑定) Vue 双向绑定 组件化 1. React,需要编写render函数, 2. 当React状态的状态state改变是render就会重新被调用, 重 ...
- winsock 服务器代码(不建议win服务器listen防火墙会禁止外部访问的)
int SessionBase::ServerSock() { /* 4 * WSADATA是个结构体,在WSAStartup中被填充. 5 * WSAStartup为调用WinSock准备初始化的工 ...
- linux 服务器安装mysql5.6
1.移除CentOS默认的mysql-libs: whereis mysql 2.为了避免冲突,先移除CenttOS上默认的mysql-libs: yum remove mysql-libs 3.然后 ...