https://vjudge.net/contest/317000#problem/F

#include <iostream>
#include <cstdio>
#include <queue>
#include <algorithm>
#include <cmath>
#include <cstring>
#define inf 2147483647
#define P 998244353
#define p(a) putchar(a)
#define For(i,a,b) for(long long i=a;i<=b;++i) using namespace std;
long long T;
long long n,a,b,c;
struct data{
long long f,g,h;
data calc(long long n,long long a,long long b,long long c){
long long ac = a / c, bc = b / c, m = (a * n + b) / c, n1 = n + , n21 = n * + ;
data d;
if (a == ) {
d.f = bc * n1;
d.g = bc * n * n1 /;
d.h = bc * bc * n1;
return d;
} if (a >= c || b >= c){
d.f = n * n1 / * ac + bc * n1;
d.g = ac * n * n1 * n21 / + bc * n * n1 / ;
d.h = ac * ac * n * n1 * n21 / + bc * bc * n1 + ac * bc * n * n1;
data e = calc(n, a % c, b % c, c);
d.h += e.h + * bc * e.f + * ac * e.g;
d.g += e.g, d.f += e.f;
return d;
} data e = calc(m - , c, c - b - , a);
d.f = n * m - e.f, d.f = d.f;
d.g = m * n * n1 - e.h - e.f, d.g = d.g /;
d.h = n * m * (m + ) - * e.g - * e.f - d.f;
return d;
}
}ans1,ans2; void in(long long &x){
long long y=;char c=getchar();x=;
while(c<''||c>''){if(c=='-')y=-;c=getchar();}
while(c<=''&&c>=''){ x=(x<<)+(x<<)+c-'';c=getchar();}
x*=y;
}
void o(long long x){
if(x<){p('-');x=-x;}
if(x>)o(x/);
p(x%+'');
} signed main(){
in(T);
while(T--){
in(a);in(c);in(n);
ans1=ans1.calc(n,a,,);
ans2=ans2.calc(n,a,,c);
o(ans1.f-c*ans2.f);p('\n');
}
return ;
}

It's a Mod, Mod, Mod, Mod World (类欧几里得模板题的更多相关文章

  1. Kattis - itsamodmodmodmodworld It's a Mod, Mod, Mod, Mod World (类欧几里得)

    题意:计算$\sum\limits_{i=1}^n[(p{\cdot }i)\bmod{q}]$ 类欧模板题,首先作转化$\sum\limits_{i=1}^n[(p{\cdot}i)\bmod{q} ...

  2. 初等变换求 |A| % Mod & A- % Mod & A* % Mod(模板)

    // |A| * A- = A* (伴随矩阵) = 逆矩阵 * 矩阵的值 #include<cstdio> #include<cstring> #include<cstd ...

  3. 2^x mod n = 1(欧拉定理,欧拉函数,快速幂乘)

    2^x mod n = 1 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  4. x^a=b(mod c)求解x在[0,c-1]上解的个数模板+原根求法

    /************************************* 求解x^a=b(mod c) x在[0,c-1]上解的个数模板 输入:1e9>=a,b>=1,1e9>= ...

  5. 类扩展欧几里得 zquoj 26659

    求该式子,因为只有里面mod  外面没mod: 所以先是把前面的等差数列求和,然后再减去模掉的部分: 这是类欧几里得模板题 #include<bits/stdc++.h> #define ...

  6. ACM模板(持续补完)

    1.KMP #include<cstring> #include<algorithm> #include<cstdio> using namespace std; ...

  7. BZOJ平推计划

    学习VFK大神推BZOJ,记录一下学习的东西 1004: burnside:一个置换群的等价计数=(每个置换的置换后等价情况数)/置换总数,每个置换的置换后等价情况数就是置换后没变的数 模意义下的除法 ...

  8. poj 1061 青蛙的约会 拓展欧几里得模板

    // poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...

  9. 【BZOJ】1407 NOI 2002 荒岛野人Savage

    拓展欧几里得入门题 两个野人若要走到同一个洞穴,设他们走了x步,则p[i]*x+c[i]≡p[j]*x+c[j](mod ans),ans即答案: 移项得到(p[i]-p[j])*X+ansY=c[j ...

随机推荐

  1. Css实现Div在页面上垂直居中显示

    方法一 <html>    <head>        <title>垂直居中</title>        <style type=" ...

  2. 2018 – 2019 年前端 JavaScript 面试题

    JavaScript 基础问题 1.使以下代码正常运行: JavaScript 代码: const a = [1, 2, 3, 4, 5]; // Implement this a.multiply( ...

  3. 5.RabbitMQ 客户端控制消息

    1.生产者发送消息,消费者结束消息并回执 2.通过channel.basicConsume向服务器发送回执,删除服务上的消息 3.//不向服务器发送回执,服务器的消息一直存在 4.//消费者拒绝接受消 ...

  4. 基于Netty的RPC架构学习笔记(五):netty线程模型源码分析(二)

    文章目录 小技巧(如何看开源框架的源码) 源码解析 阅读源码技巧 打印查看 通过打断点调试 查看调用栈 小技巧(如何看开源框架的源码) 一断点 二打印 三看调用栈 四搜索 源码解析 //设置nioso ...

  5. Jeecg 容器初始化监听器

    文件位置: F:\jeecg-bpm-3.8\jeecg-bpm-3.8-master\jeecg-bpm-3.8\src\main\java\org\jeecgframework\web\syste ...

  6. 在CentOS 7上安装常用的YUM源

    参考地址:https://blog.csdn.net/u010048823/article/details/51298183 以epel源为例子,来讲解如何添加额外的YUM源. Extra Packa ...

  7. java 在数组{1,2,3,4,6,7,8,9,10}中插入一个数5,使其插入完成后仍然有序

    1.需要实现的效果 2.代码实现 import java.util.Scanner; /* * 11.在数组{1,2,3,4,6,7,9,8,10}中插入一个数5, * 使其插入完成后仍然有序,运行结 ...

  8. more指令和less指令使用的区别

    more和less都是可以一页一页的翻动 more翻页的时候,显示有百分比在最下一行 less没有 more可以用来查询 空白键 (space):代表向下翻一页:Enter :代表向下翻『一行』:/字 ...

  9. JAVA数据结构之二叉树

    用树作为存储数据的结构兼具像数组一样查询速度快和像链表一样具有很快的插入和删除数据项的优点 我们用圆点表示节点,连接圆的直线表示边如下图所示就表示了一颗树,接下来我们讨论的二叉树即每个节点最多只有两个 ...

  10. Python自学:第五章 使用函数range( )

    # -*- coding: GBK -*- for value in range(1,5): print(value) 输出为: 1 2 3 4