题意(CodeForces 588E)

给定一棵\(n\)个点的树,给定\(m\)个人(\(m\le n\))在哪个点上的信息,每个点可以有任意个人;然后给\(q\)个询问,每次问\(u\)到\(v\)上的路径有的点上编号最小的\(k(k \le 10)\)个人(没有那么多人就该有多少人输出多少人)。

分析

\(u\)到\(v\)上路径的询问很显然的想到LCA,但是要维护前\(k\)个在路径上的最小的点似乎是个有点麻烦的问题。其实,找到了LCA(设为\(p\)点),我们就可以同样的利用倍增的思想把\(u\)到\(p\)与\(v\)到\(p\)点的路径上的人全部求出(这里有个小技巧,对于\(u\)和\(v\)点不妨错开一层求,这样可以避免去重的问题)。然后就是前\(k\)大了,这里网上有的题解比较牛逼,起手一个主席树,本数据结构废物并不会,所以学习了一下CF的题解,采用了一种比较简单的方法来处理(注意到\(k\)最大值不超过10)。

代码

经典的倍增在线求LCA板子。

#include <bits/stdc++.h>
#define rep(i,a,b) for(repType i=(a); i<=(b); ++i)
#define per(i,a,b) for(repType i=(a); i>=(b); --i)
#define ZERO(x) memset(x,0,sizeof(x))
#define MS(x,y) memset(x,y,sizeof(x))
#define PB emplace_back
#define MP make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef ll repType; const int MAXN=100005;
const int MAXD=18; vector<int> G[MAXN];
struct Node
{
int a[11];
Node() { MS(a, 63); }
void
insert(int x)
{
a[10]=x;
sort(a, a+11);
}
} vals[MAXD][MAXN]; Node
merge_node(const Node& x, const Node& y)
{
Node ans=x;
rep(i, 0, 10) { ans.insert(y.a[i]); }
return ans;
} int fa[MAXD][MAXN], d[MAXN]; void
dfs(int pre, int now)
{
fa[0][now]=pre;
rep(i, 1, MAXD-1)
{
fa[i][now]=fa[i-1][fa[i-1][now]];
vals[i][now]=merge_node(vals[i-1][now], vals[i-1][fa[i-1][now]]);
}
rep(i, 0, int(G[now].size())-1)
{
int v=G[now][i];
if(v!=pre)
{
d[v]=d[now]+1;
dfs(now, v);
}
}
} inline int
get_fa(int v, int k) // k=1, it will points to v _itself_.
{
rep(i, 0, MAXD-1)
if((1<<i) & k)
{ v=fa[i][v]; }
return v;
} int
LCA(int u, int v)
{
if(d[u]<d[v]) { swap(u, v); }
u=get_fa(u, d[u]-d[v]); if(u==v) { return u; }
else per(i, MAXD-1, 0)
{
if(fa[i][u]!=fa[i][v])
{
u=fa[i][u];
v=fa[i][v];
}
}
return fa[0][v];
} inline Node
get_people(int v, int k)
{
Node ans;
rep(i, 0, MAXD-1)
if((1<<i) & k)
{
ans=merge_node(ans, vals[i][v]);
v=fa[i][v];
}
return ans;
} int
main()
{
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0); int n, m, q; cin>>n>>m>>q; rep(i, 1, n-1)
{
int u, v; cin>>u>>v;
G[u].PB(v); G[v].PB(u);
}
rep(i, 1, m)
{
int c; cin>>c;
vals[0][c].insert(i);
} dfs(1, 1);
rep(i, 1, q)
{
int u, v, k; cin>>u>>v>>k;
int p=LCA(u, v);
Node x=get_people(u, d[u]-d[p]); // it will get the point _below_ the LCA.
Node y=get_people(v, d[v]-d[p]+1); // it will go through another route,
Node ans=merge_node(x, y); // if not, y _itself_ must be the LCA,
int tmp=0; // and the y will be the value of V.
while(tmp<k && ans.a[tmp]<=m) { tmp++; }
k=tmp;
cout<<k;
rep(i, 0, k-1) cout<<" "<<ans.a[i];
cout<<endl;
}
return 0;
}

「日常训练」Duff in the Army (Codeforces Round #326 Div.2 E)的更多相关文章

  1. 「日常训练」Kefa and Dishes(Codeforces Round #321 Div. 2 D)

    题意与分析(CodeForces 580D) 一个人有\(n\)道菜,然后要点\(m\)道菜,每道菜有一个美味程度:然后给你了很多个关系,表示如果\(x\)刚好在\(y\)前面做的话,他的美味程度就会 ...

  2. 「日常训练」Kefa and Park(Codeforces Round #321 Div. 2 C)

    题意与分析(CodeForces 580C) 给你一棵树,然后每个叶子节点会有一家餐馆:你讨厌猫(waht?怎么会有人讨厌猫),就不会走有连续超过m个节点有猫的路.然后问你最多去几家饭店. 这题我写的 ...

  3. 「日常训练」Kefa and Company(Codeforces Round #321 Div. 2 B)

    题意与分析(CodeForces 580B) \(n\)个人,告诉你\(n\)个人的工资,每个人还有一个权值.现在从这n个人中选出m个人,使得他们的权值之和最大,但是对于选中的人而言,其他被选中的人的 ...

  4. 「日常训练」Case of Matryoshkas(Codeforces Round #310 Div. 2 C)

    题意与分析(CodeForces 556C) 为了将所有\(n\)个娃娃编号递增地串在一起(原先是若干个串,每个串是递增的), 我们有两种操作: 拆出当前串中最大编号的娃娃(且一定是最右边的娃娃). ...

  5. 「日常训练」Brackets in Implications(Codeforces Round 306 Div.2 E)

    题意与分析 稍微复杂一些的思维题.反正这场全是思维题,就一道暴力水题(B).题解直接去看官方的,很详尽. 代码 #include <bits/stdc++.h> #define MP ma ...

  6. 「日常训练」Divisibility by Eight(Codeforces Round 306 Div.2 C)

    题意与分析 极简单的数论+思维题. 代码 #include <bits/stdc++.h> #define MP make_pair #define PB emplace_back #de ...

  7. 「日常训练」Paths and Trees(Codeforces Round 301 Div.2 E)

    题意与分析 题意是这样的,定义一个从某点出发的所有最短路方案中,选择边权和最小的最短路方案,称为最短生成树. 现在求一棵最短生成树,输出总边权和与选取边的编号. 我们首先要明白这样一个结论:对一个图求 ...

  8. 「日常训练」Bad Luck Island(Codeforces Round 301 Div.2 D)

    题意与分析(CodeForces 540D) 是一道概率dp题. 不过我没把它当dp做... 我就是凭着概率的直觉写的,还好这题不算难. 这题的重点在于考虑概率:他们喜相逢的概率是多少?考虑超几何分布 ...

  9. 「日常训练」Mike and Feet(Codeforces Round #305 Div. 2 D)

    题意 (Codeforces 548D) 对一个有$n$个数的数列,我们要求其连续$x(1\le x\le n)$(对于每个$x$,这样的连续group有若干个)的最小数的最大值. 分析 这是一道用了 ...

随机推荐

  1. Mabatis入门案例

    log4j.properties # Global logging configuration #\u5728\u5f00\u53d1\u9636\u6bb5\uff0c\u8bbe\u7f6e\u4 ...

  2. 自动化构建工具grunt的学习

    关于grunt的一些记录,记的比较乱... 0.删除node_modules文件夹 命令行: npm install rimraf -g //先运行 rimraf node_modules //然后运 ...

  3. Xcode4.4(LLVM4.0编译器)中NSArray, NSDictionary, NSNumber优化写法

    Xcode4.4(LLVM4.0编译器)中NSArray, NSDictionary, NSNumber优化写法 从xcode4.4开始,LLVM4.0编译器为Objective-C添加一些新的特性. ...

  4. EF Core中Key属性相同的实体只能被跟踪(track)一次

    在EF Core的DbContext中,我们可以通过DbContext或DbSet的Attach方法,来让DbContext上下文来跟踪(track)一个实体对象,假设现在我们有User实体对象,其U ...

  5. js 中 函数的返回值问题

    var result=''; function searchByStationName( address ) { // map.clearOverlays();//清空原来的标注 var keywor ...

  6. 摩尔吧 FPGA培训

    摩尔吧  FPGA培训 2017.7.30 第一天与非网摩尔吧创始人苏公雨给我们介绍了FPGA的发展历史,以及目前FPGA厂家的市场定位. 2017.7.30~2017.8.4 这个星期主要是学习画电 ...

  7. sql中UNION和UNION ALL的区别

    写sql时我们经常会遇到需要把从多张表查询的集果集进行合并.这时就用到了union.使用union或union all 时一定要保证查询的列的一致性 .不然sql会报错.字段不一致的话可以用单引号来占 ...

  8. es6 数组扩展方法

    1.扩展运算符 含义: 扩展运算符,三个点(...),将一个数组转为用逗号分隔的参数顺序. 例如: console.log([1,2,3]); console.log(...[1,2,3]);   结 ...

  9. 【模板】BM算法(找线性规律万能模板)

    (1) n是指要找该数列的第n项. (2) 往vec中放入该数列前几项的值,越多越精确. #include<set> #include<cmath> #include<v ...

  10. JS中的Symbol数据类型

    最初JS的6种数据类型: null,undefined,boolean,number,string,object 注意:实际上,array和function都是属于object的子类 ES6中,新增了 ...