MapBuilder的成员变量sensor::Collator sensor_collator_;

  再次阅读MapBuilder::AddTrajectoryBuilder方法。首先构造了mapping::GlobalTrajectoryBuilder实例,接着作为参数构造了CollatedTrajectoryBuilder实例。

trajectory_builders_.push_back(
common::make_unique<CollatedTrajectoryBuilder>(
&sensor_collator_, trajectory_id, expected_sensor_ids,
common::make_unique<mapping::GlobalTrajectoryBuilder<mapping_2d::LocalTrajectoryBuilder,mapping_2d::proto::LocalTrajectoryBuilderOptions,mapping_2d::PoseGraph>>
(trajectory_options.trajectory_builder_2d_options(),trajectory_id, pose_graph_2d_.get(),local_slam_result_callback)
)
);

  这里sensor_collator_作为参数传入,参与CollatedTrajectoryBuilder构造。查看构造函数:

CollatedTrajectoryBuilder::CollatedTrajectoryBuilder(sensor::Collator* const sensor_collator, const int trajectory_id, const std::unordered_set<std::string>& expected_sensor_ids,   std::unique_ptr<TrajectoryBuilderInterface> wrapped_trajectory_builder)
: sensor_collator_(sensor_collator)
, trajectory_id_(trajectory_id)
, wrapped_trajectory_builder_(std::move(wrapped_trajectory_builder))
, last_logging_time_(std::chrono::steady_clock::now())
{
sensor_collator_->AddTrajectory(trajectory_id, expected_sensor_ids,
[this](const std::string& sensor_id, std::unique_ptr<sensor::Data> data)
{
HandleCollatedSensorData(sensor_id, std::move(data));
}
);
}

  这里是回调函数,std::unique_ptr是表示参数为智能指针。

 [this](const std::string& sensor_id, std::unique_ptr<sensor::Data> data)
{
HandleCollatedSensorData(sensor_id, std::move(data));
}

  (1)查看sensor::Collator的AddTrajectory方法:

void Collator::AddTrajectory( const int trajectory_id, const std::unordered_set<std::string>& expected_sensor_ids, const Callback& callback)
{
for (const auto& sensor_id : expected_sensor_ids)
{
const auto queue_key = QueueKey{trajectory_id, sensor_id};
queue_.AddQueue(queue_key, [callback, sensor_id](std::unique_ptr<Data> data)
{
callback(sensor_id, std::move(data));
});
queue_keys_[trajectory_id].push_back(queue_key);
}
}

  for (const auto& sensor_id : expected_sensor_ids)用到了C++11的auto新特性。

  (2)查看HandleCollatedSensorData方法。调用了data->AddToTrajectoryBuilder(wrapped_trajectory_builder_.get());这里wrapped_trajectory_builder_是在CollatedTrajectoryBuilder构造函数中赋值的。为GlobalTrajectoryBuilder对象。因而查看sensor::Data的AddToTrajectoryBuilder() 方法。

  virtual void AddToTrajectoryBuilder(mapping::TrajectoryBuilderInterface *trajectory_builder) = 0;是sensor::Data类的一个虚方法。内部执行了trajectory_builder->AddSensorData(sensor_id_, data_);

最后调用的是GlobalTrajectoryBuilder对象的AddSensorData(xx)方法。

 void CollatedTrajectoryBuilder::HandleCollatedSensorData( const std::string& sensor_id, std::unique_ptr<sensor::Data> data)
{
auto it = rate_timers_.find(sensor_id);
if (it == rate_timers_.end())
{
it = rate_timers_ .emplace(
std::piecewise_construct, std::forward_as_tuple(sensor_id),
std::forward_as_tuple(common::FromSeconds(kSensorDataRatesLoggingPeriodSeconds))) .first;
}
it->second.Pulse(data->GetTime()); if (std::chrono::steady_clock::now() - last_logging_time_ >
common::FromSeconds(kSensorDataRatesLoggingPeriodSeconds))
{
for (const auto& pair : rate_timers_)
{
LOG(INFO) << pair.first << " rate: " << pair.second.DebugString();
}
last_logging_time_ = std::chrono::steady_clock::now();
} data->AddToTrajectoryBuilder(wrapped_trajectory_builder_.get());
} }

CollatedTrajectoryBuilder::HandleCollatedSensorData

template <typename DataType>
class Dispatchable : public Data
{
public:
Dispatchable(const std::string &sensor_id, const DataType &data): Data(sensor_id), data_(data) {} common::Time GetTime() const override { return data_.time; } void AddToTrajectoryBuilder( mapping::TrajectoryBuilderInterface *const trajectory_builder) override
{
trajectory_builder->AddSensorData(sensor_id_, data_);
} private:
const DataType data_;
};

  再以IMU数据为例,GlobalTrajectoryBuilder类的AddSensorData(xx):

void AddSensorData(const std::string& sensor_id,  const sensor::ImuData& imu_data) override
{
local_trajectory_builder_.AddImuData(imu_data);
pose_graph_->AddImuData(trajectory_id_, imu_data);
}

  再看一下激光点云的数据

 void AddSensorData( const std::string& sensor_id, const sensor::TimedPointCloudData& timed_point_cloud_data) override
{
std::unique_ptr<typename LocalTrajectoryBuilder::MatchingResult> matching_result =
local_trajectory_builder_.AddRangeData( timed_point_cloud_data.time,
sensor::TimedRangeData {timed_point_cloud_data.origin,
timed_point_cloud_data.ranges, {}}
);
if (matching_result == nullptr)
{
// The range data has not been fully accumulated yet.
return;
}
std::unique_ptr<mapping::NodeId> node_id;
if (matching_result->insertion_result != nullptr)
{
node_id = ::cartographer::common::make_unique<mapping::NodeId>(
pose_graph_->AddNode(matching_result->insertion_result->constant_data,
trajectory_id_, matching_result->insertion_result->insertion_submaps));
CHECK_EQ(node_id->trajectory_id, trajectory_id_);
}
if (local_slam_result_callback_)
{
local_slam_result_callback_( trajectory_id_, matching_result->time,
matching_result->local_pose,
std::move(matching_result->range_data_in_local), std::move(node_id));
}
}

  这里有两个重要的步骤一个是local_trajectory_builder_.AddRangeData(xxx),一个是 pose_graph_->AddNode(xxx)方法。同时std::unique_ptr<typename LocalTrajectoryBuilder::MatchingResult> matching_result作为AddNode方法的参数。

 mapping::NodeId PoseGraph::AddNode(
std::shared_ptr<const mapping::TrajectoryNode::Data> constant_data,
const int trajectory_id,
const std::vector<std::shared_ptr<const Submap>>& insertion_submaps) {
const transform::Rigid3d optimized_pose(
GetLocalToGlobalTransform(trajectory_id) * constant_data->local_pose); common::MutexLocker locker(&mutex_);
AddTrajectoryIfNeeded(trajectory_id);
const mapping::NodeId node_id = trajectory_nodes_.Append(
trajectory_id, mapping::TrajectoryNode{constant_data, optimized_pose});
++num_trajectory_nodes_; // Test if the 'insertion_submap.back()' is one we never saw before.
if (submap_data_.SizeOfTrajectoryOrZero(trajectory_id) == ||
std::prev(submap_data_.EndOfTrajectory(trajectory_id))->data.submap !=
insertion_submaps.back()) {
// We grow 'submap_data_' as needed. This code assumes that the first
// time we see a new submap is as 'insertion_submaps.back()'.
const mapping::SubmapId submap_id =
submap_data_.Append(trajectory_id, SubmapData());
submap_data_.at(submap_id).submap = insertion_submaps.back();
} // We have to check this here, because it might have changed by the time we
// execute the lambda.
const bool newly_finished_submap = insertion_submaps.front()->finished();
AddWorkItem([=]() REQUIRES(mutex_) {
ComputeConstraintsForNode(node_id, insertion_submaps,
newly_finished_submap);
});
return node_id;
}

PoseGraph::AddNode

  PoseGraph::AddNode方法很重要,分析节点和子图的关系。

  此处强调一下GlobalTrajectoryBuilder的两个关键对象local_trajectory_builder_和pose_graph_。

  PoseGraph* const pose_graph_;
LocalTrajectoryBuilder local_trajectory_builder_;

  接下来按照准备安装ROS消息发布和处理的流程进行分析,即数据流。


参考资料:

http://blog.csdn.net/datase/article/details/78665862

http://blog.csdn.net/learnmoreonce/article/category/6989560

Cartographer源码阅读(4):Node和MapBuilder对象2的更多相关文章

  1. Cartographer源码阅读(2):Node和MapBuilder对象

    上文提到特别注意map_builder_bridge_.AddTrajectory(x,x),查看其中的代码.两点: 首先是map_builder_.AddTrajectoryBuilder(...) ...

  2. Cartographer源码阅读(1):程序入口

    带着几个思考问题: (1)IMU数据的使用,如何融合,Kalman滤波? (2)图优化的具体实现,闭环检测的策略? (3)3D激光的接入和闭环策略? 1. 安装Kdevelop工具: http://b ...

  3. Cartographer源码阅读(6):LocalTrajectoryBuilder和PoseExtrapolator

    LocalTrajectoryBuilder意思是局部轨迹的构建,下面的类图中方法的参数没有画进去. 注意其中的三个类:PoseExtrapolator类,RealTimeCorrelativeSca ...

  4. Cartographer源码阅读(5):PoseGraph位姿图

    PoseGraph位姿图 mapping2D::PoseGraph类的注释: // Implements the loop closure method called Sparse Pose Adju ...

  5. Cartographer源码阅读(8):imu_tracker

    IMU的输入为imu_linear_acceleration 和  imu_angular_velocity 线加速和角速度.最终作为属性输出的是方位四元数.  Eigen::Quaterniond ...

  6. Cartographer源码阅读(9):图优化的前端——闭环检测

    约束计算 闭环检测的策略:搜索闭环,通过匹配检测是否是闭环,采用了分支定界法. 前已经述及PoseGraph的内容,此处继续.位姿图类定义了pose_graph::ConstraintBuilder ...

  7. Cartographer源码阅读(3):程序逻辑结构

    Cartographer早期的代码在进行3d制图的时候使用了UKF方法,查看现有的tag版本,可以转到0.1.0和0.2.0查看,包含kalman_filter文件夹. 文件夹中的pose_track ...

  8. Cartographer源码阅读(7):轨迹推算和位姿推算的原理

    其实也就是包括两个方面的内容:类似于运动模型的位姿估计和扫描匹配,因为需要计算速度,所以时间就有必要了! 1. PoseExtrapolator解决了IMU数据.里程计和位姿信息进行融合的问题. 该类 ...

  9. koa源码阅读[0]

    koa源码阅读[0] Node.js也是写了两三年的时间了,刚开始学习Node的时候,hello world就是创建一个HttpServer,后来在工作中也是经历过Express.Koa1.x.Koa ...

随机推荐

  1. vue-resource和vue-async-data两个插件的使用

    vue-resource和vue-async-data两个插件的使用,看了一下文档http://cn.vuejs.org/guide/plugins.html#u5DF2_u6709_u63D2_u4 ...

  2. logrus日志使用详解

    1.logrus特点 golang标准库的日志框架很简单,logrus框架的特点: 1)完全兼容标准日志库 六种日志级别:debug, info, warn, error, fatal, panic ...

  3. 深入 AngularUI Router

    翻译:深入 AngularUI Router 原文地址:http://www.ng-newsletter.com/posts/angular-ui-router.html ui-router: htt ...

  4. 【iCore4 双核心板_ARM】例程三十二:UART_IAP_ARM实验——更新升级STM32

    实验现象及操作说明: 1.本例程共有两个代码包,APP和IAP,IAP程序功能实现将APP程序升级至STM32中. 2.直接上电或烧写程序将执行升级的APP应用程序. BIN升级文件产生方法: 1.编 ...

  5. 解决ubuntu系统中firefox无法播放网页版音乐播放器音乐

    Reference: https://blog.csdn.net/h736131708/article/details/80775382 因为网页版的qq音乐或者网易云音乐都把音频换成了AAC格式,这 ...

  6. Paxos 实现日志复制同步(Basic Paxos)

    Paxos 实现日志复制同步 本篇文章以 John Ousterhout(斯坦福大学教授) 和 Diego Ongaro(斯坦福大学获得博士学位,Raft算法发明人) 在 Youtube 上的讲解视频 ...

  7. JTable动态刷新数据

    http://www.cnblogs.com/fnlingnzb-learner/p/6025408.html 注意下面几个方法的应用场景,不限于JTable,其他swing组件一样 ———————— ...

  8. 微信小程序,图片居中显示,适配不同机型

    <view style='width:100%;height:100%;text-align:center;' class="picture-2">   <ima ...

  9. python定义函数时,形参前加*和**的意义

    转发:https://blog.csdn.net/qq_34806812/article/details/82017839 1.加*表示接受一个tuple类型(元组),如: 2.加**表示接受一个di ...

  10. 使用100%面向过程的思维方式来写java程序

    1.java是强制写class关键字的语言,不能有独立的函数游离在类外出现在文件中,这和python c++ 都不同,后面的都可以单独在类外写函数,所以java被称为是纯面向对象的语言,py和c++都 ...