考虑这样一个问题:一棵树初始全是白点,有两种操作:把一个点染黑;询问某点到所有黑点的距离之和。

  注意到树上两点x和y的距离为depth[x]+depth[y]-depth[lca(x,y)]*2。要求出上面的东西,depth[x]+depth[y]可以很简单的算出来,关键在于depth[lca(x,y)]。这一部分实质上是x到根的路径和y到根的路径重合的部分。那么我们可以树剖,在修改的时候,把该点到根的路径全部+1(其实是1单位,具体到每个点是其到父亲的那条边的长度),查询时查这个点到根的权值和就好了。

  然后回到本题。无修改查询某个区间很容易想到主席树,那么按照点权从小到大染黑就是上面那个题,用主席树记录一下答案。每次需要在主席树上修改logn个区间,那么复杂度是log^2的。注意查询时不能下传标记,否则空间爆炸。

  这个做法并没有用到度数<=3的性质,要用的话可以动态点分,写不动。

  对着树剖和主席树的部分调了好长时间,感觉非常正确,最后发现离散化出问题了……没救。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 200010
int n,m,q,t=,a[N],c[N],p[N],b[N],deep[N];
int dfn[N],fa[N],top[N],id[N],size[N],son[N],cnt=;
long long lastans=,tot[N];
struct data{int to,nxt,len;
}edge[N<<];
int root[N],sum[N],sz[N];
struct data2{int l,r,tag;long long x;
}tree[N<<];
void addedge(int x,int y,int z){t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].len=z,p[x]=t;}
bool cmp(const int&x,const int&y)
{
return a[x]<a[y];
}
void dfs1(int k)
{
size[k]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k])
{
deep[edge[i].to]=deep[k]+edge[i].len;
fa[edge[i].to]=k;
dfs1(edge[i].to);
size[k]+=size[edge[i].to];
if (size[edge[i].to]>size[son[k]]) son[k]=edge[i].to;
}
}
void dfs2(int k,int from)
{
top[k]=from;id[k]=++cnt;dfn[cnt]=k;
if (son[k]) dfs2(son[k],from);
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k]&&edge[i].to!=son[k])
dfs2(edge[i].to,edge[i].to);
}
void add(int &k,int l,int r,int x,int y)
{
tree[++cnt]=tree[k];k=cnt;
tree[k].x+=sum[y]-sum[x-];
if (l==x&&r==y){tree[k].tag++;return;}
int mid=l+r>>;
if (y<=mid) add(tree[k].l,l,mid,x,y);
else if (x>mid) add(tree[k].r,mid+,r,x,y);
else add(tree[k].l,l,mid,x,mid),add(tree[k].r,mid+,r,mid+,y);
}
long long query(int k,int l,int r,int x,int y,int tag)
{
if (l==x&&r==y) return tree[k].x+1ll*(sum[y]-sum[x-])*tag;
tag+=tree[k].tag;
int mid=l+r>>;
if (y<=mid) return query(tree[k].l,l,mid,x,y,tag);
else if (x>mid) return query(tree[k].r,mid+,r,x,y,tag);
else return query(tree[k].l,l,mid,x,mid,tag)+query(tree[k].r,mid+,r,mid+,y,tag);
}
void modify(int i,int x)
{
while (x)
{
add(root[i],,n,id[top[x]],id[x]);
x=fa[top[x]];
}
}
long long getans(int r,int l,int x)
{
long long s=1ll*deep[x]*(sz[r]-sz[l])+tot[r]-tot[l];
while (x)
{
s-=query(root[r],,n,id[top[x]],id[x],)-query(root[l],,n,id[top[x]],id[x],)<<;
x=fa[top[x]];
}
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4012.in","r",stdin);
freopen("bzoj4012.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),q=read(),m=read();
for (int i=;i<=n;i++) c[i]=a[i]=read(),b[i]=i;
sort(b+,b+n+,cmp);
sort(c+,c+n+);
int u=unique(c+,c+n+)-c;
for (int i=;i<n;i++)
{
int x=read(),y=read(),z=read();
addedge(x,y,z),addedge(y,x,z);
}
dfs1();
dfs2(,);
cnt=;
for (int i=;i<=n;i++) sum[i]=sum[i-]+deep[dfn[i]]-deep[fa[dfn[i]]];
for (int i=;i<=n;i++)
{
int x=lower_bound(c+,c+u,a[b[i]])-c;
root[x]=root[x-];tot[x]=tot[x-];
modify(x,b[i]);tot[x]+=deep[b[i]];
while (a[b[i+]]==a[b[i]]) i++,modify(x,b[i]),tot[x]+=deep[b[i]];
sz[x]=i;
}
for (int i=;i<=q;i++)
{
int x=read(),w=read(),v=read();
int l=min((w+lastans)%m,(v+lastans)%m),r=max((w+lastans)%m,(v+lastans)%m);
l=lower_bound(c+,c+u,l)-c,r=upper_bound(c+,c+u,r)-c-;
lastans=getans(r,l-,x);
printf(LL,lastans);
}
return ;
}

BZOJ4012 HNOI2015开店(树链剖分+主席树)的更多相关文章

  1. dfs序+主席树 或者 树链剖分+主席树(没写) 或者 线段树套线段树 或者 线段树套splay 或者 线段树套树状数组 bzoj 4448

    4448: [Scoi2015]情报传递 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 588  Solved: 308[Submit][Status ...

  2. Codechef FIBTREE 树链剖分 主席树 LCA 二次剩余 快速幂

    原文链接https://www.cnblogs.com/zhouzhendong/p/CC-FIBTREE.html 题目传送门 - CC-FIBTREE 题意 给定一个有 $n$ 个节点,初始点权都 ...

  3. BZOJ1146 [CTSC2008]网络管理Network 树链剖分 主席树 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1146 题意概括 在一棵树上,每一个点一个权值. 有两种操作: 1.单点修改 2.询问两点之间的树链 ...

  4. bzoj 4448 [Scoi2015]情报传递 (树链剖分+主席树)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4448 题面: Description 奈特公司是一个巨大的情报公司,它有着庞大的情报网络 ...

  5. BZOJ 4448: [Scoi2015]情报传递 树链剖分 主席树

    4448: [Scoi2015]情报传递 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4448 Description 奈特公司是一个巨 ...

  6. [GDOI2016][树链剖分+主席树]疯狂动物城

    题面 Description Nick 是只在动物城以坑蒙拐骗为生的狐狸,儿时受到偏见的伤害,放弃了自己的理想.他被兔子 Judy 设下圈套,被迫与她合作查案,而卷入意想不到的阴谋,历尽艰险后成为搭档 ...

  7. HDU 5111 Alexandra and Two Trees 树链剖分 + 主席树

    题意: 给出两棵树,每棵树的节点都有一个权值. 同一棵树上的节点的权值互不相同,不同树上节点的权值可以相同. 要求回答如下询问: \(u_1 \, v_1 \, u_2 \, v_2\):询问第一棵树 ...

  8. 5.15 牛客挑战赛40 E 小V和gcd树 树链剖分 主席树 树状数组 根号分治

    LINK:小V和gcd树 时限是8s 所以当时好多nq的暴力都能跑过. 考虑每次询问暴力 跳父亲 这样是nq的 4e8左右 随便过. 不过每次跳到某个点的时候需要得到边权 如果直接暴力gcd的话 nq ...

  9. BZOJ3531 SDOI2014 旅行 - 树链剖分,主席树

    题意:给定一棵树,树上每个点有权值和类型.支持:修改某个点的类型:修改某个点的权值:询问某条链上某个类型的点的和/最大值.点数/类型数/询问数<=100000. 分析: 树链剖分,对每个类型的点 ...

随机推荐

  1. MySQL(三)用正则表达式搜索

    正则表达式是用来匹配文本的特殊的串(字符集合),将一个模式(正则表达式)与一个文本串进行比较: 所有种类的程序设计语言.文本编辑器.操作系统等都支持正则表达式,正则表达式用正则表达式语言来建立: My ...

  2. 51Nod 1443 路径和树

    还是一道很简单的基础题,就是一个最短路径树的类型题目 我们首先可以发现这棵树必定满足从1出发到其它点的距离都是原图中的最短路 换句话说,这棵树上的每一条边都是原图从1出发到其它点的最短路上的边 那么直 ...

  3. 异步编程(async&await)

    前言 本来这篇文章上个月就该发布了,但是因为忙 QuarkDoc 一直没有时间整理,所以耽搁到今天,现在回归正轨. C# 5.0 虽然只引入了2个新关键词:async和await.然而它大大简化了异步 ...

  4. TCP服务端开发为例--web开发不同url请求为何会走不同方法

    拿java的web开发为例子,相信有很多小伙伴是做j2EE开发的,htpp请求,json数据传输都是工作中经常用的,查询请求,添加请求,修改请求前端配个url,例如https://localhost/ ...

  5. windows下docker启动.net core mvc随手记

    docker基本命令: 查看当前的版本docker--version查看本地所有镜像:docker images查看当前正在运行的所有容器docker ps停止某个容器:docker stop 容器I ...

  6. C#_图片存取数据库Winform

    #region 用于在PictureBox控件中显示选择的图片        /// <summary>        /// 用于在PictureBox控件中显示选择的图片        ...

  7. Linux ip forward

    Linux 默认带有 ip forward 功能,只不过因为各种原因,默认的配置把该功能关闭了.本文通过 demo 来演示 Linux 的 ip forward 功能,具体场景为:开启 Linux 的 ...

  8. centos下部署redis服务环境及其配置说明

    Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API.从2010年3月15日起,Redis的开发工作由VMware主 ...

  9. Centos7.2下OpenVPN 环境完整部署记录

    关于OpenVPN的有关介绍及为何使用OpenVPN在此就不做赘述了,下面直接记录Centos7.2系统下部署OpenVPN环境的操作过程: 1) 先将本机的yum换成阿里云的yum源 [root@t ...

  10. 20135218 实践四 ELF文件格式分析

    一 :概述 ELF全称Executable and Linkable Format,可执行连接格式,ELF格式的文件用于存储Linux程序.ELF文件(目标文件)格式主要三种: (1)可重定向文件:文 ...