1741. Communication Fiend

Time limit: 1.0 second
Memory limit: 64 MB

Kolya has returned from a summer camp and now he's a real communication fiend. He spends all his free time on the Web chatting with his friends via ICQ. However, lately the protocol of this service was changed once again, and Kolya's client stopped working. Now, in order to communicate with his friends again, Kolya has to upgrade his client from version 1 to version n.

Kolya has found m upgrade programs on the Web. The i-th program upgrades the client from version xi to version yi and its size is di megabytes. Each program can be installed on the corresponding version of the client only; it can't be installed on either earlier or later versions.

The first version, which is currently installed on Kolya's computer, is licensed, and many of the upgrade programs are pirate copies. If a pirate upgrade program is used, the client will always be pirated after that, whatever upgrade is used later. Some of the licensed upgrade programs can be installed on a pirate version of the client, and some of them can't. All the pirate upgrade programs can be installed on both licensed and pirate versions of the client.

Kolya is missing his friends very much, so he wants to download the necessary upgrade programs as soon as possible. Unfortunately, his Web connection is not very fast. Help Kolya determine the minimal total traffic volume necessary for upgrading the client from version 1 to version n. Kolya doesn't care if the final version n of his client is licensed or not.

Input

The first line contains space-separated integers n and m (2 ≤ n ≤ 104; 1 ≤ m ≤ 104).

Each of the following m lines describes one upgrade program in the form “xi yi di si”. Here, si is the type of the program: “Pirated”, “Cracked”, or “Licensed”. A cracked upgrade program is a licensed program that can be installed on a pirate version of the client, and a licensed program can't be installed on a pirate version. The numbers xi and yi mean that the program is installed on version xi of the client and upgrades it to version yi. The number di is the size of the program in megabytes (1 ≤ xi < yi ≤ n; 1 ≤ di ≤ 106). The data in each line are separated with exactly one space.

Output

If Kolya can upgrade the client from version 1 to version n, output “Online” in the first line and the minimal necessary total incoming traffic volume in the second line.

If it is impossible to upgrade the client, output “Offline”.

Samples

input output
3 4
1 3 10 Licensed
1 2 2 Pirated
2 3 3 Licensed
2 3 6 Cracked
Online
8
3 1
1 2 10 Licensed
Offline
Problem Author: Alex Samsonov (prepared by Marina Mukhacheva)
Problem Source: XIV Open USU Championship

题目链接:Ural 1741

题目虽说正规解法是DP,但是似乎是可以用最短路来做的,一开始想用d[i][k]表示到达i时系统状态是k然后建图进行spfa,然而最好还是WA10。

题目中间的版本变化似乎没有讲清楚,就是说用了某个升级包之后会使得当前系统的正版状态发生变化,尤其是Cracked包,用之后的状态跟用之前的状态是保持一致的,虽然题目中说它也是一个Licensed,但是不能使得盗版变成正版。

然后想了另外一种思路才A掉

可以将正版的系统节点看成1~n,盗版就是n+1~n+n,然后显然有:对于Lisenced版本只能从正版升级到正版,只能添加一条u->v的单向边;对于Pirate版本可以从正版升级到盗版也可以从盗版继续升级到盗版,因此添加u->v+n,与u+n->v+n;对于Cracked版本就是看成一种桥,盗版可以继续盗版,正版继续正版,

即u->v与u+n->v+n,然后跑一个spfa,看d[n]正版和d[n<<1]盗版的值就行了

提供一组数据用来说明Cracked的作用

4 3
1 2 1 Pirated
2 3 3 Cracked
3 4 6 Licensed

答案应为 Offline

代码:

#include<stdio.h>
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<long long,int> pli;
typedef long long LL;
const double PI=acos(-1.0); const int N=2e4+10;
struct edge
{
int to;
int pre;
LL w;
};
edge E[N];
int head[N],tot;
LL d[N]; void add(int s,int t,LL w)
{
E[tot].to=t;
E[tot].w=w;
E[tot].pre=head[s];
head[s]=tot++;
}
void init()
{
CLR(d,INF);
CLR(head,-1);
tot=0;
}
void spfa(int s)
{
priority_queue<pli>Q;
d[s]=0LL;
Q.push(pli(-d[s],s));
while (!Q.empty())
{
int now=Q.top().second;
Q.pop();
for (int i=head[now]; ~i; i=E[i].pre)
{
int v=E[i].to;
LL w=E[i].w;
if(d[v]>d[now]+w)
{
d[v]=d[now]+w;
Q.push(pli(-d[v],v));
}
}
}
} int main(void)
{
int n,m,i,u,v;
LL D;
char flag[15];
while (cin>>n>>m)
{
init();
LL inf=d[0];
for (i=0; i<m; ++i)
{
cin>>u>>v>>D>>flag;
if(flag[0]=='C')
{
add(u,v,D);
add(n+u,n+v,D);
}
else if(flag[0]=='L')
{
add(u,v,D);
}
else if(flag[0]=='P')
{
add(u,n+v,D);
add(n+u,n+v,D);
}
}
spfa(1);
LL ans=min<LL>(d[n],d[n<<1]);
if(ans==inf)
cout<<"Offline"<<endl;
else
cout<<"Online"<<endl<<ans<<endl;
}
return 0;
}

Ural 1741 Communication Fiend(隐式图+虚拟节点最短路)的更多相关文章

  1. DP/最短路 URAL 1741 Communication Fiend

    题目传送门 /* 题意:程序从1到n版本升级,正版+正版->正版,正版+盗版->盗版,盗版+盗版->盗版 正版+破解版->正版,盗版+破解版->盗版 DP:每种情况考虑一 ...

  2. URAL 1741 Communication Fiend(最短路径)

    Description Kolya has returned from a summer camp and now he's a real communication fiend. He spends ...

  3. URAL 1741 Communication Fiend

    URAL 1741 思路: dp 状态:dp[i][1]表示到第i个版本为正版的最少流量花费 dp[i][0]表示到第i个版本为盗版的最少流量花费 初始状态:dp[1][0]=dp[0][0]=0 目 ...

  4. 【UVA】658 - It&#39;s not a Bug, it&#39;s a Feature!(隐式图 + 位运算)

    这题直接隐式图 + 位运算暴力搜出来的,2.5s险过,不是正法,做完这题做的最大收获就是学会了一些位运算的处理方式. 1.将s中二进制第k位变成0的处理方式: s = s & (~(1 < ...

  5. 八数码问题+路径寻找问题+bfs(隐式图的判重操作)

    Δ路径寻找问题可以归结为隐式图的遍历,它的任务是找到一条凑够初始状态到终止问题的最优路径, 而不是像回溯法那样找到一个符合某些要求的解. 八数码问题就是路径查找问题背景下的经典训练题目. 程序框架 p ...

  6. uva658(最短路径+隐式图+状态压缩)

    题目连接(vj):https://vjudge.net/problem/UVA-658 题意:补丁在修正 bug 时,有时也会引入新的 bug.假定有 n(n≤20)个潜在 bug 和 m(m≤100 ...

  7. nyoj 21--三个水杯(隐式图bfs)

    三个水杯 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 给出三个水杯,大小不一,并且只有最大的水杯的水是装满的,其余两个为空杯子.三个水杯之间相互倒水,并且水杯没有标识 ...

  8. UVA 658 状态压缩+隐式图+优先队列dijstla

    不可多得的好题目啊,我看了别人题解才做出来的,这种题目一看就会做的实在是大神啊,而且我看别人博客都看了好久才明白...还是对状态压缩不是很熟练,理解几个位运算用了好久时间.有些题目自己看着别人的题解做 ...

  9. UVA - 658 It's not a Bug, it's a Feature! (隐式图的最短路,位运算)

    隐式的图搜索,存不下边,所以只有枚举转移就行了,因为bug的存在状态可以用二进制表示,转移的时候判断合法可以用位运算优化, 二进制pre[i][0]表示可以出现的bug,那么u&pre[i][ ...

随机推荐

  1. codeforces C. Vasily the Bear and Sequence 解题报告

    题目链接:http://codeforces.com/problemset/problem/336/C 题目意思:给出一个递增的正整数序列 a1, a2, ..., an,要求从中选出一堆数b1, b ...

  2. 转:JavaScript事件冒泡简介及应用

    (本文转载自别处) JavaScript事件冒泡简介及应用   一.什么是事件冒泡 在一个对象上触发某类事件(比如单击onclick事件),如果此对象定义了此事件的处理程序,那么此事件就会调用这个处理 ...

  3. 信与信封问题(codevs 1222)

    题目描述 Description John先生晚上写了n封信,并相应地写了n个信封将信装好,准备寄出.但是,第二天John的儿子Small John将这n封信都拿出了信封.不幸的是,Small Joh ...

  4. 一、HTML和CSS基础--HTML+CSS基础课程--第5部分

    第九章 CSS盒模型 元素分类
: 在讲解CSS布局之前,我们需要提前知道一些知识,在CSS中,html中的标签元素大体被分为三种不同的类型:块状元素.内联元素(又叫行内元素)和内联块状元素. 常用的 ...

  5. 归并排序的分析与Java实现

    归并操作(merge),也叫归并算法,指的是将两个已经排序的序列合并成一个序列的操作.归并排序算法依赖归并操作.该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.归并排序 ...

  6. hdu 1240:Asteroids!(三维BFS搜索)

    Asteroids! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  7. UVa 11995:I Can Guess the Data Structure!(数据结构练习)

    I Can Guess the Data Structure! There is a bag-like data structure, supporting two operations: 1 x T ...

  8. spring classpath & classpath*

    classpath-找到系统类路径下的第一个匹配的配置文件 classpath*-找到系统类路径下的所有符合要求的配置文件 参考资料:http://www.micmiu.com/j2ee/spring ...

  9. LoadRunner字符串与参数的操作及转换技巧

    刚开始学LR时,经常搞不清楚变量和参数的区别与用法,最近在一次脚本编写中,整理出来的一些小技巧,与大家一起分享. //字符串复制 strcpy(str,"Hello ") ; // ...

  10. js:工具库-highcharts.js

    主要用于方便绘制图标,注意是需要付费的: 相关连接: 官网 中文网 祛除自带标识的代码: credits: { enabled: false //remove the logo and button ...