opencv之膨胀与腐蚀
腐蚀和膨胀 Erosion/Dilation
erosion/dilation,用白话说,就是让图像亮的区域收缩和扩张.
原理
- 我们定义一个卷积核矩阵.这个矩阵可以是任何形状的,但通常而言,是矩形或者圆形的.同时要定义一个锚点位置.
- 用这个卷积核矩阵挨个地划过原始图像矩阵,同时更改锚点位置的像素值.
- 锚点位置的像素值更改为卷积核矩阵覆盖的有效像素值中的最大值/最小值(分别对应膨胀/腐蚀).
什么叫"有效"像素值呢?就是卷积核中不为0的那些位置.用公式表达的话,即:


膨胀和腐蚀,说白了就是个求"卷积核所表示的局部"的最大值最小值的过程.
我们来看一个例子:
import cv2
import numpy as np
def test1():
img = np.zeros((10,10,1),np.uint8)
img[3:7,3:7,:] = 255
img[4:6,4:6,:] = 200
kernel1 = cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
erosion_dst = cv2.erode(img, kernel1)
print(erosion_dst)
首先我们创建一个10 x 10的图像,像素如下:
[[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 255 255 255 255 0 0 0]
[ 0 0 0 255 200 200 255 0 0 0]
[ 0 0 0 255 200 200 255 0 0 0]
[ 0 0 0 255 255 255 255 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]]
我们创建一个卷积核:
kernel1 = cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
getStructuringElement api

三个参数分别为卷积核的形状/大小/锚点位置. 默认锚点在矩阵的中心位置.
形状有三种

上面代码中我们创建的3 x 3矩形卷积核如下

用这个卷积核对原始图像做腐蚀后得到的矩阵如下

即矩阵有如下变化:
[[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 255 255 255 255 0 0 0]
[ 0 0 0 255 200 200 255 0 0 0]
[ 0 0 0 255 200 200 255 0 0 0]
[ 0 0 0 255 255 255 255 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]]
-->
[[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 200 200 0 0 0 0]
[ 0 0 0 0 200 200 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]]
我们考虑第三行第四列img[2,3,:]这个像素.当我们的卷积核矩阵的锚点位置与该像素重合时,我们取周边所有像素的最小值.最小值为0.所以该位置的像素值变为0. 其余位置的像素值同理可求.
我们稍微改一下我们的代码,然后再看一下不同卷积核作用下的不同结果,会理解的更清楚
import cv2
import numpy as np
def test1():
img = np.zeros((10,10,1),np.uint8)
img[3:7,3:7,:] = 255
img[4:6,4:6,:] = 200
kernel1 = cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
print(kernel1)
erosion_dst = cv2.erode(img, kernel1)
print(erosion_dst)
def test2():
img = np.zeros((10,10,1),np.uint8)
img[3:7,3:7,:] = 255
img[4:6,4:6,:] = 200
img[2,4,:] = 100
kernel1 = cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
erosion_dst = cv2.erode(img, kernel1)
print(erosion_dst)
kernel2 = cv2.getStructuringElement(cv2.MORPH_CROSS,(3,3))
erosion_dst2 = cv2.erode(img, kernel2)
print(erosion_dst2)
test2()
我们把原始图像矩阵改为
[[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 100 0 0 0 0 0]
[ 0 0 0 255 255 255 255 0 0 0]
[ 0 0 0 255 200 200 255 0 0 0]
[ 0 0 0 255 200 200 255 0 0 0]
[ 0 0 0 255 255 255 255 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]]
用kernal1时,kernal1如下:

以第四行,第五列的像素为例,用卷积核的锚点与之对应,此时计算的是其周围八个像素的最小值,最小值为0.
所以我们得到的矩阵为

当我们用kernal2时,kernal2如下:

对第四行,第五列的像素,用卷积核的锚点与之对应,此时计算的不再是周围八个像素的最小值,而是其正上方,正下方,正左边,正右边的四个像素的最小值.该值为100.
所以我们得到的矩阵为

opencv示例
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
erosion_size = 0
max_elem = 2
max_kernel_size = 21
title_trackbar_element_type = 'Element:\n 0: Rect \n 1: Cross \n 2: Ellipse'
title_trackbar_kernel_size = 'Kernel size:\n 2n +1'
title_erosion_window = 'Erosion Demo'
title_dilatation_window = 'Dilation Demo'
def erosion(val):
erosion_size = cv.getTrackbarPos(title_trackbar_kernel_size, title_erosion_window)
erosion_type = 0
val_type = cv.getTrackbarPos(title_trackbar_element_type, title_erosion_window)
if val_type == 0:
erosion_type = cv.MORPH_RECT
elif val_type == 1:
erosion_type = cv.MORPH_CROSS
elif val_type == 2:
erosion_type = cv.MORPH_ELLIPSE
element = cv.getStructuringElement(erosion_type, (2*erosion_size + 1, 2*erosion_size+1), (erosion_size, erosion_size))
erosion_dst = cv.erode(src, element)
cv.imshow(title_erosion_window, erosion_dst)
def dilatation(val):
dilatation_size = cv.getTrackbarPos(title_trackbar_kernel_size, title_dilatation_window)
dilatation_type = 0
val_type = cv.getTrackbarPos(title_trackbar_element_type, title_dilatation_window)
if val_type == 0:
dilatation_type = cv.MORPH_RECT
elif val_type == 1:
dilatation_type = cv.MORPH_CROSS
elif val_type == 2:
dilatation_type = cv.MORPH_ELLIPSE
element = cv.getStructuringElement(dilatation_type, (2*dilatation_size + 1, 2*dilatation_size+1), (dilatation_size, dilatation_size))
dilatation_dst = cv.dilate(src, element)
cv.imshow(title_dilatation_window, dilatation_dst)
src = cv.imread("/home/sc/disk/keepgoing/opencv_test/j.png")
cv.namedWindow(title_erosion_window)
cv.createTrackbar(title_trackbar_element_type, title_erosion_window , 0, max_elem, erosion)
cv.createTrackbar(title_trackbar_kernel_size, title_erosion_window , 0, max_kernel_size, erosion)
cv.namedWindow(title_dilatation_window)
cv.createTrackbar(title_trackbar_element_type, title_dilatation_window , 0, max_elem, dilatation)
cv.createTrackbar(title_trackbar_kernel_size, title_dilatation_window , 0, max_kernel_size, dilatation)
erosion(0)
dilatation(0)
cv.waitKey()
通过createTrackbar在窗口上创建两个bar,方便我们看不同种类不同大小的卷积核的影响.
cv.createTrackbar(title_trackbar_element_type, title_erosion_window , 0, max_elem, erosion)
cv.createTrackbar(title_trackbar_kernel_size, title_erosion_window , 0, max_kernel_size, erosion)
原始图片:

处理效果:

opencv实现
https://github.com/opencv/opencv/blob/master/modules/imgproc/src/morph.dispatch.cpp
opencv之膨胀与腐蚀的更多相关文章
- opencv 形态学膨胀和腐蚀以及开运算和闭运算
- 图像的膨胀与腐蚀——OpenCV与C++的具体实现
目录 1. 膨胀与腐蚀的原理 2. 膨胀的具体实现 1) OpenCV实现 2) C/C++实现 3) 验证与结果 3. 腐蚀的具体实现 1. 膨胀与腐蚀的原理 膨胀与腐蚀是数学形态学在图像处理中最基 ...
- OpenCV——图像处理入门:膨胀与腐蚀、图像模糊、边缘检测
全部外部依赖项: opencv_aruco341d.lib opencv_bgsegm341d.lib opencv_calib3d341d.lib opencv_bioinspired341d.li ...
- OpenCV膨胀与腐蚀
膨胀与腐蚀 本篇博客主要介绍使用OpenCV中的函数接口实现对一个图片的腐蚀或者膨胀,听起来有点像是对图像进行放大和缩小的意思,如果你也是这样认为,那我只能说你跟我一样肤浅!!在OpenCV中几乎所有 ...
- OpenCV图像处理篇之腐蚀与膨胀
转载请注明出处:http://xiahouzuoxin.github.io/notes 腐蚀与膨胀 腐蚀和膨胀是图像的形态学处理中最主要的操作,之后遇见的开操作和闭操作都是腐蚀和膨胀操作的结合运算. ...
- OpenCV膨胀和腐蚀示例代码
#include<cv.h> #include<highgui.h> int main(int argc, char** argv) { IplImage* img = cvL ...
- 学习 opencv---(9)形态学图像处理(一):膨胀和腐蚀
本篇文章中,我们一起探究了图像处理中,最基本的形态学运算--膨胀与腐蚀.浅墨在文章开头友情提醒,用人物照片做腐蚀和膨胀的素材图片得到的效果会比较惊悚,毁三观的,不建议尝试.......... 一.理论 ...
- Atitit 图像处理—图像形态学(膨胀与腐蚀)
Atitit 图像处理-图像形态学(膨胀与腐蚀) 1.1. 膨胀与腐蚀1 1.2. 图像处理之二值膨胀及应用2 1.3. 测试原理,可以给一个5*5pic,测试膨胀算法5 1.4. Photoshop ...
- paper 76:膨胀、腐蚀、开、闭运算——数字图像处理中的形态学
膨胀.腐蚀.开.闭运算是数学形态学最基本的变换.本文主要针对二值图像的形态学膨胀:把二值图像各1像素连接成分的边界扩大一层(填充边缘或0像素内部的孔):腐蚀:把二值图像各1像素连接成分的边界点去掉从而 ...
随机推荐
- webpack4 output配置 filename chunkhash报错
这里的hash由chunkhash改成hash,原因是使用HotModuleReplacementPlugin之后不能使用chunkhash和contenthash.看到有些地方说把“hot:true ...
- Spring Cloud Alibaba | Sentinel:分布式系统的流量防卫兵进阶实战
Spring Cloud Alibaba | Sentinel:分布式系统的流量防卫兵进阶实战 在阅读本文前,建议先阅读<Spring Cloud Alibaba | Sentinel:分布式系 ...
- 基于SSM的在线考试系统
本系统功能非常完善,页面美观大方,技术新颖,选用主流数据库Mysql,表数量及结构适当,如果你需要做在线考试或者其它考试类系统,这个系统将非常有用. 其实,任何考试系统,无非试题不一样,所以如果你是做 ...
- 062 Python必备库-从Web解析到网络空间
目录 一.概述 二.Python库之网络爬虫 2.1 Requests 2.2 Scrapy 2.3 pyspider 三.Python库之Web信息提取 3.1 Beautiful Soup 3.2 ...
- 使用Nginx实现反向代理过程(一台服务器部署两个网站)
正向代理指的是客户端的 反向代理指的是服务端的 需要实现的反向代理: 1.首先使用SwitchHosts配置不同域名,如下:(SwitchHosts软件在上一篇博客有链接) 2.在Linux上部署两台 ...
- netcore 基于 DispatchProxy 实现一个简单Rpc远程调用
前言 netcore 发布以来,一直很关注netcore的进程.目前在公司负责的网站也历经波折的全部有.net framework 4.0 全部切换到netcore 2.2 版本中.虽然过程遇到的坑不 ...
- 并发编程之线程创建到销毁、常用API
在前面一篇介绍了线程的生命周期[并发编程之多线程概念],在本篇将正式介绍如何创建.中断线程,以及线程是如何销毁的.最后,我们会讲解一些常见的线程API. 线程创建 Java 5 以前,实现线程有两种方 ...
- Dubbo 与 Spring Cloud 完美结合
Dubbo 与 Spring Cloud 完美结合 1. 概述 可能说起来Dubbo,很多人都不陌生,这毕竟是一款从2012年就开始开源的Java RPC框架,中间由于各种各样的原因停止更新4年半的时 ...
- 新建servlet工程
1.选择新建Dynamic Web Project 2.选择服务器和版本(2.5) 3.src目录下新建一个包 4.包里面新建一个类 5.实现Servlet接口(通过http协议访问) 6.serv ...
- Flink 从 0 到 1 学习 —— 如何自定义 Data Sink ?
前言 前篇文章 <从0到1学习Flink>-- Data Sink 介绍 介绍了 Flink Data Sink,也介绍了 Flink 自带的 Sink,那么如何自定义自己的 Sink 呢 ...