MATLAB实例:PCA降维

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

1. iris数据

5.1,3.5,1.4,0.2,1
4.9,3.0,1.4,0.2,1
4.7,3.2,1.3,0.2,1
4.6,3.1,1.5,0.2,1
5.0,3.6,1.4,0.2,1
5.4,3.9,1.7,0.4,1
4.6,3.4,1.4,0.3,1
5.0,3.4,1.5,0.2,1
4.4,2.9,1.4,0.2,1
4.9,3.1,1.5,0.1,1
5.4,3.7,1.5,0.2,1
4.8,3.4,1.6,0.2,1
4.8,3.0,1.4,0.1,1
4.3,3.0,1.1,0.1,1
5.8,4.0,1.2,0.2,1
5.7,4.4,1.5,0.4,1
5.4,3.9,1.3,0.4,1
5.1,3.5,1.4,0.3,1
5.7,3.8,1.7,0.3,1
5.1,3.8,1.5,0.3,1
5.4,3.4,1.7,0.2,1
5.1,3.7,1.5,0.4,1
4.6,3.6,1.0,0.2,1
5.1,3.3,1.7,0.5,1
4.8,3.4,1.9,0.2,1
5.0,3.0,1.6,0.2,1
5.0,3.4,1.6,0.4,1
5.2,3.5,1.5,0.2,1
5.2,3.4,1.4,0.2,1
4.7,3.2,1.6,0.2,1
4.8,3.1,1.6,0.2,1
5.4,3.4,1.5,0.4,1
5.2,4.1,1.5,0.1,1
5.5,4.2,1.4,0.2,1
4.9,3.1,1.5,0.1,1
5.0,3.2,1.2,0.2,1
5.5,3.5,1.3,0.2,1
4.9,3.1,1.5,0.1,1
4.4,3.0,1.3,0.2,1
5.1,3.4,1.5,0.2,1
5.0,3.5,1.3,0.3,1
4.5,2.3,1.3,0.3,1
4.4,3.2,1.3,0.2,1
5.0,3.5,1.6,0.6,1
5.1,3.8,1.9,0.4,1
4.8,3.0,1.4,0.3,1
5.1,3.8,1.6,0.2,1
4.6,3.2,1.4,0.2,1
5.3,3.7,1.5,0.2,1
5.0,3.3,1.4,0.2,1
7.0,3.2,4.7,1.4,2
6.4,3.2,4.5,1.5,2
6.9,3.1,4.9,1.5,2
5.5,2.3,4.0,1.3,2
6.5,2.8,4.6,1.5,2
5.7,2.8,4.5,1.3,2
6.3,3.3,4.7,1.6,2
4.9,2.4,3.3,1.0,2
6.6,2.9,4.6,1.3,2
5.2,2.7,3.9,1.4,2
5.0,2.0,3.5,1.0,2
5.9,3.0,4.2,1.5,2
6.0,2.2,4.0,1.0,2
6.1,2.9,4.7,1.4,2
5.6,2.9,3.6,1.3,2
6.7,3.1,4.4,1.4,2
5.6,3.0,4.5,1.5,2
5.8,2.7,4.1,1.0,2
6.2,2.2,4.5,1.5,2
5.6,2.5,3.9,1.1,2
5.9,3.2,4.8,1.8,2
6.1,2.8,4.0,1.3,2
6.3,2.5,4.9,1.5,2
6.1,2.8,4.7,1.2,2
6.4,2.9,4.3,1.3,2
6.6,3.0,4.4,1.4,2
6.8,2.8,4.8,1.4,2
6.7,3.0,5.0,1.7,2
6.0,2.9,4.5,1.5,2
5.7,2.6,3.5,1.0,2
5.5,2.4,3.8,1.1,2
5.5,2.4,3.7,1.0,2
5.8,2.7,3.9,1.2,2
6.0,2.7,5.1,1.6,2
5.4,3.0,4.5,1.5,2
6.0,3.4,4.5,1.6,2
6.7,3.1,4.7,1.5,2
6.3,2.3,4.4,1.3,2
5.6,3.0,4.1,1.3,2
5.5,2.5,4.0,1.3,2
5.5,2.6,4.4,1.2,2
6.1,3.0,4.6,1.4,2
5.8,2.6,4.0,1.2,2
5.0,2.3,3.3,1.0,2
5.6,2.7,4.2,1.3,2
5.7,3.0,4.2,1.2,2
5.7,2.9,4.2,1.3,2
6.2,2.9,4.3,1.3,2
5.1,2.5,3.0,1.1,2
5.7,2.8,4.1,1.3,2
6.3,3.3,6.0,2.5,3
5.8,2.7,5.1,1.9,3
7.1,3.0,5.9,2.1,3
6.3,2.9,5.6,1.8,3
6.5,3.0,5.8,2.2,3
7.6,3.0,6.6,2.1,3
4.9,2.5,4.5,1.7,3
7.3,2.9,6.3,1.8,3
6.7,2.5,5.8,1.8,3
7.2,3.6,6.1,2.5,3
6.5,3.2,5.1,2.0,3
6.4,2.7,5.3,1.9,3
6.8,3.0,5.5,2.1,3
5.7,2.5,5.0,2.0,3
5.8,2.8,5.1,2.4,3
6.4,3.2,5.3,2.3,3
6.5,3.0,5.5,1.8,3
7.7,3.8,6.7,2.2,3
7.7,2.6,6.9,2.3,3
6.0,2.2,5.0,1.5,3
6.9,3.2,5.7,2.3,3
5.6,2.8,4.9,2.0,3
7.7,2.8,6.7,2.0,3
6.3,2.7,4.9,1.8,3
6.7,3.3,5.7,2.1,3
7.2,3.2,6.0,1.8,3
6.2,2.8,4.8,1.8,3
6.1,3.0,4.9,1.8,3
6.4,2.8,5.6,2.1,3
7.2,3.0,5.8,1.6,3
7.4,2.8,6.1,1.9,3
7.9,3.8,6.4,2.0,3
6.4,2.8,5.6,2.2,3
6.3,2.8,5.1,1.5,3
6.1,2.6,5.6,1.4,3
7.7,3.0,6.1,2.3,3
6.3,3.4,5.6,2.4,3
6.4,3.1,5.5,1.8,3
6.0,3.0,4.8,1.8,3
6.9,3.1,5.4,2.1,3
6.7,3.1,5.6,2.4,3
6.9,3.1,5.1,2.3,3
5.8,2.7,5.1,1.9,3
6.8,3.2,5.9,2.3,3
6.7,3.3,5.7,2.5,3
6.7,3.0,5.2,2.3,3
6.3,2.5,5.0,1.9,3
6.5,3.0,5.2,2.0,3
6.2,3.4,5.4,2.3,3
5.9,3.0,5.1,1.8,3

2. MATLAB程序

function [COEFF,SCORE,latent,tsquared,explained,mu,data_PCA]=pca_demo()
x=load('iris.data');
[~,d]=size(x);
k=d-1; %前k个主成分
x=zscore(x(:,1:d-1)); %归一化数据
[COEFF,SCORE,latent,tsquared,explained,mu]=pca(x);
% 1)获取样本数据 X ,样本为行,特征为列。
% 2)对样本数据中心化,得S(S = X的各列减去各列的均值)。
% 3)求 S 的协方差矩阵 C = cov(S)
% 4) 对协方差矩阵 C 进行特征分解 [P,Lambda] = eig(C);
% 5)结束。
% 1、输入参数 X 是一个 n 行 p 列的矩阵。每行代表一个样本观察数据,每列则代表一个属性,或特征。
% 2、COEFF 就是所需要的特征向量组成的矩阵,是一个 p 行 p 列的矩阵,没列表示一个出成分向量,经常也称为(协方差矩阵的)特征向量。并且是按照对应特征值降序排列的。所以,如果只需要前 k 个主成分向量,可通过:COEFF(:,1:k) 来获得。
% 3、SCORE 表示原数据在各主成分向量上的投影。但注意:是原数据经过中心化后在主成分向量上的投影。即通过:SCORE = x0*COEFF 求得。其中 x0 是中心平移后的 X(注意:是对维度进行中心平移,而非样本。),因此在重建时,就需要加上这个平均值了。
% 4、latent 是一个列向量,表示特征值,并且按降序排列。
% 5、tsquared Hotelling的每个观测值X的T平方统计量
% 6、explained 由每个主成分解释的总方差的百分比
% 7、mu 每个变量X的估计平均值
% x= bsxfun(@minus,x,mean(x,1));
data_PCA=x*COEFF(:,1:k);
latent1=100*latent/sum(latent);%将latent总和统一为100,便于观察贡献率
pareto(latent1);%调用matla画图 pareto仅绘制累积分布的前95%,因此y中的部分元素并未显示
xlabel('Principal Component');
ylabel('Variance Explained (%)');
% 图中的线表示的累积变量解释程度
print(gcf,'-dpng','Iris PCA.png');
iris_pac=data_PCA(:,1:2) ;
save iris_pca iris_pac

3. 结果

iris_pca:前两个主成分

-2.25698063306803	0.504015404227653
-2.07945911889541 -0.653216393612590
-2.36004408158421 -0.317413944570283
-2.29650366000389 -0.573446612971233
-2.38080158645275 0.672514410791076
-2.06362347633724 1.51347826673567
-2.43754533573242 0.0743137171331950
-2.22638326740708 0.246787171742162
-2.33413809644009 -1.09148977019584
-2.18136796941948 -0.447131117450110
-2.15626287481026 1.06702095645556
-2.31960685513084 0.158057945820095
-2.21665671559727 -0.706750478104682
-2.63090249246321 -0.935149145374822
-2.18497164997156 1.88366804891533
-2.24394778052703 2.71328133141014
-2.19539570001472 1.50869601039751
-2.18286635818774 0.512587093716441
-1.88775015418968 1.42633236069007
-2.33213619695782 1.15416686250116
-1.90816386828207 0.429027879924458
-2.19728429051438 0.949277150423224
-2.76490709741649 0.487882574439700
-1.81433337754274 0.106394361814184
-2.22077768737273 0.161644638073716
-1.95048968523510 -0.605862870440206
-2.04521166172712 0.265126114804279
-2.16095425532709 0.550173363315497
-2.13315967968331 0.335516397664229
-2.26121491382610 -0.313827252316662
-2.13739396044139 -0.482326258880086
-1.82582143036022 0.443780130732953
-2.59949431958629 1.82237008322707
-2.42981076672382 2.17809479520796
-2.18136796941948 -0.447131117450110
-2.20373717203888 -0.183722323644913
-2.03759040170113 0.682669420156327
-2.18136796941948 -0.447131117450110
-2.42781878392261 -0.879223932713649
-2.16329994558551 0.291749566745466
-2.27889273592867 0.466429134628597
-1.86545776627869 -2.31991965918865
-2.54929404704891 -0.452301129580194
-1.95772074352968 0.495730895348582
-2.12624969840005 1.16752080832811
-2.06842816583668 -0.689607099127106
-2.37330741591874 1.14679073709691
-2.39018434748641 -0.361180775489047
-2.21934619663183 1.02205856145225
-2.19858869176329 0.0321302060908945
1.10030752013391 0.860230593245533
0.730035752246062 0.596636784545418
1.23796221659453 0.612769614333371
0.395980710562889 -1.75229858398514
1.06901265623960 -0.211050862633647
0.383174475987114 -0.589088965722193
0.746215185580377 0.776098608766709
-0.496201068006129 -1.84269556949638
0.923129796737431 0.0302295549588077
0.00495143780650871 -1.02596403732389
-0.124281108093219 -2.64918765259090
0.437265238506424 -0.0586846858581760
0.549792126592992 -1.76666307900171
0.714770518429262 -0.184815166484382
-0.0371339806719297 -0.431350035919633
0.872966018474250 0.508295314415273
0.346844440799832 -0.189985178614466
0.152880381053472 -0.788085297090142
1.21124542423444 -1.62790202112846
0.156417163578196 -1.29875232891050
0.735791135537219 0.401126570248885
0.470792483676532 -0.415217206131680
1.22388807504403 -0.937773165086814
0.627279600231826 -0.415419947028686
0.698133985336190 -0.0632819273014206
0.870620328215835 0.249871517845242
1.25003445866275 -0.0823442389434431
1.35370481019450 0.327722365822153
0.659915359649250 -0.223597000167979
-0.0471236447211597 -1.05368247816741
0.121128417400412 -1.55837168956507
0.0140710866007487 -1.56813894313840
0.235222818975321 -0.773333046281646
1.05316323317206 -0.634774729305402
0.220677797156699 -0.279909968621073
0.430341476713787 0.852281697154445
1.04590946111265 0.520453696157683
1.03241950881290 -1.38781716762055
0.0668436673617666 -0.211910813930204
0.274505447436587 -1.32537578085168
0.271425764670620 -1.11570381243558
0.621089830946741 0.0274506709978046
0.328903506457842 -0.985598883763833
-0.372380114621411 -2.01119457605980
0.281999617970590 -0.851099454545845
0.0887557702224096 -0.174324544331148
0.223607676665854 -0.379214256409087
0.571967341693057 -0.153206717308028
-0.455486948803962 -1.53432438068788
0.251402252309636 -0.593871222060355
1.84150338645482 0.868786147264828
1.14933941416981 -0.698984450845645
2.19898270027627 0.552618780551384
1.43388176486790 -0.0498435417617587
1.86165398830779 0.290220535935809
2.74500070081969 0.785799704159685
0.357177895625210 -1.55488557249365
2.29531637451915 0.408149356863061
1.99505169024551 -0.721448439846371
2.25998344407884 1.91502747107928
1.36134878398531 0.691631011499905
1.59372545693795 -0.426818952656741
1.87796051113409 0.412949339203311
1.24890257443547 -1.16349352357816
1.45917315700813 -0.442664601834978
1.58649439864337 0.674774813132046
1.46636772102851 0.252347085727036
2.42924030093571 2.54822056527013
3.29809226641255 -0.00235343587272177
1.24979406018816 -1.71184899071237
2.03368323142868 0.904369044486726
0.970663302005081 -0.569267277965818
2.88838806680663 0.396463170625287
1.32475563655861 -0.485135293486995
1.69855040646181 1.01076227706927
1.95119099025002 0.999984474306318
1.16799162725452 -0.317831851008113
1.01637609822602 0.0653241212065782
1.78004554289349 -0.192627479858818
1.85855159177699 0.553527164026207
2.42736549094542 0.245830911619345
2.30834922706014 2.61741528404554
1.85415981777379 -0.184055790370030
1.10756129219332 -0.294997832217552
1.19347091639304 -0.814439294423699
2.79159729280499 0.841927657717863
1.57487925633390 1.06889360300461
1.34254676764379 0.420846092290459
0.920349720485088 0.0191661621187343
1.84736314547313 0.670177571688802
2.00942543830962 0.608358978317639
1.89676252747561 0.683734258412757
1.14933941416981 -0.698984450845645
2.03648602144585 0.861797777652503
1.99500750598298 1.04504903502442
1.86427657131500 0.381543630923962
1.55328823048458 -0.902290843047121
1.51576710303099 0.265903772450991
1.37179554779330 1.01296839034343
0.956095566421630 -0.0222095406309480

累计贡献率

可见:前两个主成分已经占了95%的贡献程度。这两个主成分可以近似表示整个数据。

4. pca_data.m

其中normlization.m见MATLAB实例:聚类初始化方法与数据归一化方法

function data=pca_data(data, choose)
% PCA降维,保留90%的特征信息
data = normlization(data, choose); %归一化
score = 0.90; %保留90%的特征信息
[num,dim] = size(data);
xbar = mean(data,1);
means = bsxfun(@minus, data, xbar);
cov = means'*means/num;
[V,D] = eig(cov);
eigval = diag(D);
[~,idx] = sort(eigval,'descend');
eigval = eigval(idx);
V = V(idx,:);
p = 0;
for i=1:dim
perc = sum(eigval(1:i))/sum(eigval);
if perc > score
p = i;
break;
end
end
E = V(1:p,:);
data= means*E';

参考:

Junhao Hua. Distributed Variational Bayesian Algorithms. Github, 2017.

MATLAB实例:PCA(主成成分分析)详解

MATLAB实例:PCA降维的更多相关文章

  1. MATLAB实例:PCA(主成成分分析)详解

    MATLAB实例:PCA(主成成分分析)详解 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 主成成分分析 2. MATLAB解释 详细信息请看: ...

  2. PCA降维2

    前言 本文为模式识别系列第一篇,主要介绍主成分分析算法(Principal Component Analysis,PCA)的理论,并附上相关代码.全文主要分六个部分展开: 1)简单示例.通过简单的例子 ...

  3. [综] PCA降维

    http://blog.json.tw/using-matlab-implementing-pca-dimension-reduction 設有m筆資料, 每筆資料皆為n維, 如此可將他們視為一個mx ...

  4. 机器学习公开课笔记(8):k-means聚类和PCA降维

    K-Means算法 非监督式学习对一组无标签的数据试图发现其内在的结构,主要用途包括: 市场划分(Market Segmentation) 社交网络分析(Social Network Analysis ...

  5. Python机器学习笔记 使用scikit-learn工具进行PCA降维

    之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多 ...

  6. PCA降维—降维后样本维度大小

    之前对PCA的原理挺熟悉,但一直没有真正使用过.最近在做降维,实际用到了PCA方法对样本特征进行降维,但在实践过程中遇到了降维后样本维数大小限制问题. MATLAB自带PCA函数:[coeff, sc ...

  7. 一步步教你轻松学主成分分析PCA降维算法

    一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...

  8. PCA 降维算法详解 以及代码示例

    转载地址:http://blog.csdn.net/watkinsong/article/details/38536463 1. 前言 PCA : principal component analys ...

  9. PCA降维技术

    PCA降维技术 PCA 降维 Fly Time: 2017-2-28 主成分分析(PCA) PCA Algorithm 实例 主成分分析(PCA) 主成分分析(Principal Component ...

随机推荐

  1. Python—创建进程的三种方式

    方式一:os.fork() 子进程是从os.fork得到的值,然后赋值开始执行的.即子进程不执行os.fork,从得到的值开始执行. 父进程中fork之前的内容子进程同样会复制,但父子进程空间独立,f ...

  2. Scrapy 下载图片时 ModuleNotFoundError: No module named'PIL'

    使用scrapy的下载模块需要PIL(python图像处理模块)的支持,使用pip安装即可

  3. 【转载】XSS攻击和sql注入

    XSS攻击: https://www.cnblogs.com/dolphinX/p/3391351.html 跨站脚本攻击(Cross Site Script为了区别于CSS简称为XSS)指的是恶意攻 ...

  4. LG4158 「SCOI2009」粉刷匠 线性DP

    问题描述 LG4158 题解 设\(opt[i][j][k]\)代表到\((i,k)\)刷了\(j\)次的方案数. 一开始DP顺序有点问题,调了很长时间. 务必考虑清楚DP顺序问题 \(\mathrm ...

  5. You Are Given a Decimal String... CodeForces - 1202B [简单dp][补题]

    补一下codeforces前天教育场的题.当时只A了一道题. 大致题意: 定义一个x - y - counter :是一个加法计数器.初始值为0,之后可以任意选择+x或者+y而我们由每次累加结果的最后 ...

  6. 【AtCoder】AtCoder Grand Contest 040 解题报告

    点此进入比赛 \(A\):><(点此看题面) 大致题意: 给你一个长度为\(n-1\).由\(<\)和\(>\)组成的的字符串,第\(i\)位的字符表示第\(i\)个数和第\( ...

  7. 实现迭代器(__next__和__iter__)

    目录 一.简单示例 二.StopIteration异常版 三.模拟range 四.斐波那契数列 一.简单示例 死循环 class Foo: def __init__(self, x): self.x ...

  8. jquery延迟加载

    jquery实现图片延时加载,实现原理:不设置img的src地址,把地址存在img的alt中,当img标签出现在可视区域,alt值传给src.为避免看到替换文本alt,把字体的颜色设置为背景的颜色,如 ...

  9. php获取url中的参数

    // 获取url参数值function is_set_param($param){ $current_url = $_SERVER["QUERY_STRING"]; $arr = ...

  10. Python的定时器与线程池

    定时器执行循环任务: 知识储备 Timer(interval, function, args=None, kwargs=None) interval ===> 时间间隔 单位为s functio ...