MATLAB实例:PCA降维

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

1. iris数据

5.1,3.5,1.4,0.2,1
4.9,3.0,1.4,0.2,1
4.7,3.2,1.3,0.2,1
4.6,3.1,1.5,0.2,1
5.0,3.6,1.4,0.2,1
5.4,3.9,1.7,0.4,1
4.6,3.4,1.4,0.3,1
5.0,3.4,1.5,0.2,1
4.4,2.9,1.4,0.2,1
4.9,3.1,1.5,0.1,1
5.4,3.7,1.5,0.2,1
4.8,3.4,1.6,0.2,1
4.8,3.0,1.4,0.1,1
4.3,3.0,1.1,0.1,1
5.8,4.0,1.2,0.2,1
5.7,4.4,1.5,0.4,1
5.4,3.9,1.3,0.4,1
5.1,3.5,1.4,0.3,1
5.7,3.8,1.7,0.3,1
5.1,3.8,1.5,0.3,1
5.4,3.4,1.7,0.2,1
5.1,3.7,1.5,0.4,1
4.6,3.6,1.0,0.2,1
5.1,3.3,1.7,0.5,1
4.8,3.4,1.9,0.2,1
5.0,3.0,1.6,0.2,1
5.0,3.4,1.6,0.4,1
5.2,3.5,1.5,0.2,1
5.2,3.4,1.4,0.2,1
4.7,3.2,1.6,0.2,1
4.8,3.1,1.6,0.2,1
5.4,3.4,1.5,0.4,1
5.2,4.1,1.5,0.1,1
5.5,4.2,1.4,0.2,1
4.9,3.1,1.5,0.1,1
5.0,3.2,1.2,0.2,1
5.5,3.5,1.3,0.2,1
4.9,3.1,1.5,0.1,1
4.4,3.0,1.3,0.2,1
5.1,3.4,1.5,0.2,1
5.0,3.5,1.3,0.3,1
4.5,2.3,1.3,0.3,1
4.4,3.2,1.3,0.2,1
5.0,3.5,1.6,0.6,1
5.1,3.8,1.9,0.4,1
4.8,3.0,1.4,0.3,1
5.1,3.8,1.6,0.2,1
4.6,3.2,1.4,0.2,1
5.3,3.7,1.5,0.2,1
5.0,3.3,1.4,0.2,1
7.0,3.2,4.7,1.4,2
6.4,3.2,4.5,1.5,2
6.9,3.1,4.9,1.5,2
5.5,2.3,4.0,1.3,2
6.5,2.8,4.6,1.5,2
5.7,2.8,4.5,1.3,2
6.3,3.3,4.7,1.6,2
4.9,2.4,3.3,1.0,2
6.6,2.9,4.6,1.3,2
5.2,2.7,3.9,1.4,2
5.0,2.0,3.5,1.0,2
5.9,3.0,4.2,1.5,2
6.0,2.2,4.0,1.0,2
6.1,2.9,4.7,1.4,2
5.6,2.9,3.6,1.3,2
6.7,3.1,4.4,1.4,2
5.6,3.0,4.5,1.5,2
5.8,2.7,4.1,1.0,2
6.2,2.2,4.5,1.5,2
5.6,2.5,3.9,1.1,2
5.9,3.2,4.8,1.8,2
6.1,2.8,4.0,1.3,2
6.3,2.5,4.9,1.5,2
6.1,2.8,4.7,1.2,2
6.4,2.9,4.3,1.3,2
6.6,3.0,4.4,1.4,2
6.8,2.8,4.8,1.4,2
6.7,3.0,5.0,1.7,2
6.0,2.9,4.5,1.5,2
5.7,2.6,3.5,1.0,2
5.5,2.4,3.8,1.1,2
5.5,2.4,3.7,1.0,2
5.8,2.7,3.9,1.2,2
6.0,2.7,5.1,1.6,2
5.4,3.0,4.5,1.5,2
6.0,3.4,4.5,1.6,2
6.7,3.1,4.7,1.5,2
6.3,2.3,4.4,1.3,2
5.6,3.0,4.1,1.3,2
5.5,2.5,4.0,1.3,2
5.5,2.6,4.4,1.2,2
6.1,3.0,4.6,1.4,2
5.8,2.6,4.0,1.2,2
5.0,2.3,3.3,1.0,2
5.6,2.7,4.2,1.3,2
5.7,3.0,4.2,1.2,2
5.7,2.9,4.2,1.3,2
6.2,2.9,4.3,1.3,2
5.1,2.5,3.0,1.1,2
5.7,2.8,4.1,1.3,2
6.3,3.3,6.0,2.5,3
5.8,2.7,5.1,1.9,3
7.1,3.0,5.9,2.1,3
6.3,2.9,5.6,1.8,3
6.5,3.0,5.8,2.2,3
7.6,3.0,6.6,2.1,3
4.9,2.5,4.5,1.7,3
7.3,2.9,6.3,1.8,3
6.7,2.5,5.8,1.8,3
7.2,3.6,6.1,2.5,3
6.5,3.2,5.1,2.0,3
6.4,2.7,5.3,1.9,3
6.8,3.0,5.5,2.1,3
5.7,2.5,5.0,2.0,3
5.8,2.8,5.1,2.4,3
6.4,3.2,5.3,2.3,3
6.5,3.0,5.5,1.8,3
7.7,3.8,6.7,2.2,3
7.7,2.6,6.9,2.3,3
6.0,2.2,5.0,1.5,3
6.9,3.2,5.7,2.3,3
5.6,2.8,4.9,2.0,3
7.7,2.8,6.7,2.0,3
6.3,2.7,4.9,1.8,3
6.7,3.3,5.7,2.1,3
7.2,3.2,6.0,1.8,3
6.2,2.8,4.8,1.8,3
6.1,3.0,4.9,1.8,3
6.4,2.8,5.6,2.1,3
7.2,3.0,5.8,1.6,3
7.4,2.8,6.1,1.9,3
7.9,3.8,6.4,2.0,3
6.4,2.8,5.6,2.2,3
6.3,2.8,5.1,1.5,3
6.1,2.6,5.6,1.4,3
7.7,3.0,6.1,2.3,3
6.3,3.4,5.6,2.4,3
6.4,3.1,5.5,1.8,3
6.0,3.0,4.8,1.8,3
6.9,3.1,5.4,2.1,3
6.7,3.1,5.6,2.4,3
6.9,3.1,5.1,2.3,3
5.8,2.7,5.1,1.9,3
6.8,3.2,5.9,2.3,3
6.7,3.3,5.7,2.5,3
6.7,3.0,5.2,2.3,3
6.3,2.5,5.0,1.9,3
6.5,3.0,5.2,2.0,3
6.2,3.4,5.4,2.3,3
5.9,3.0,5.1,1.8,3

2. MATLAB程序

function [COEFF,SCORE,latent,tsquared,explained,mu,data_PCA]=pca_demo()
x=load('iris.data');
[~,d]=size(x);
k=d-1; %前k个主成分
x=zscore(x(:,1:d-1)); %归一化数据
[COEFF,SCORE,latent,tsquared,explained,mu]=pca(x);
% 1)获取样本数据 X ,样本为行,特征为列。
% 2)对样本数据中心化,得S(S = X的各列减去各列的均值)。
% 3)求 S 的协方差矩阵 C = cov(S)
% 4) 对协方差矩阵 C 进行特征分解 [P,Lambda] = eig(C);
% 5)结束。
% 1、输入参数 X 是一个 n 行 p 列的矩阵。每行代表一个样本观察数据,每列则代表一个属性,或特征。
% 2、COEFF 就是所需要的特征向量组成的矩阵,是一个 p 行 p 列的矩阵,没列表示一个出成分向量,经常也称为(协方差矩阵的)特征向量。并且是按照对应特征值降序排列的。所以,如果只需要前 k 个主成分向量,可通过:COEFF(:,1:k) 来获得。
% 3、SCORE 表示原数据在各主成分向量上的投影。但注意:是原数据经过中心化后在主成分向量上的投影。即通过:SCORE = x0*COEFF 求得。其中 x0 是中心平移后的 X(注意:是对维度进行中心平移,而非样本。),因此在重建时,就需要加上这个平均值了。
% 4、latent 是一个列向量,表示特征值,并且按降序排列。
% 5、tsquared Hotelling的每个观测值X的T平方统计量
% 6、explained 由每个主成分解释的总方差的百分比
% 7、mu 每个变量X的估计平均值
% x= bsxfun(@minus,x,mean(x,1));
data_PCA=x*COEFF(:,1:k);
latent1=100*latent/sum(latent);%将latent总和统一为100,便于观察贡献率
pareto(latent1);%调用matla画图 pareto仅绘制累积分布的前95%,因此y中的部分元素并未显示
xlabel('Principal Component');
ylabel('Variance Explained (%)');
% 图中的线表示的累积变量解释程度
print(gcf,'-dpng','Iris PCA.png');
iris_pac=data_PCA(:,1:2) ;
save iris_pca iris_pac

3. 结果

iris_pca:前两个主成分

-2.25698063306803	0.504015404227653
-2.07945911889541 -0.653216393612590
-2.36004408158421 -0.317413944570283
-2.29650366000389 -0.573446612971233
-2.38080158645275 0.672514410791076
-2.06362347633724 1.51347826673567
-2.43754533573242 0.0743137171331950
-2.22638326740708 0.246787171742162
-2.33413809644009 -1.09148977019584
-2.18136796941948 -0.447131117450110
-2.15626287481026 1.06702095645556
-2.31960685513084 0.158057945820095
-2.21665671559727 -0.706750478104682
-2.63090249246321 -0.935149145374822
-2.18497164997156 1.88366804891533
-2.24394778052703 2.71328133141014
-2.19539570001472 1.50869601039751
-2.18286635818774 0.512587093716441
-1.88775015418968 1.42633236069007
-2.33213619695782 1.15416686250116
-1.90816386828207 0.429027879924458
-2.19728429051438 0.949277150423224
-2.76490709741649 0.487882574439700
-1.81433337754274 0.106394361814184
-2.22077768737273 0.161644638073716
-1.95048968523510 -0.605862870440206
-2.04521166172712 0.265126114804279
-2.16095425532709 0.550173363315497
-2.13315967968331 0.335516397664229
-2.26121491382610 -0.313827252316662
-2.13739396044139 -0.482326258880086
-1.82582143036022 0.443780130732953
-2.59949431958629 1.82237008322707
-2.42981076672382 2.17809479520796
-2.18136796941948 -0.447131117450110
-2.20373717203888 -0.183722323644913
-2.03759040170113 0.682669420156327
-2.18136796941948 -0.447131117450110
-2.42781878392261 -0.879223932713649
-2.16329994558551 0.291749566745466
-2.27889273592867 0.466429134628597
-1.86545776627869 -2.31991965918865
-2.54929404704891 -0.452301129580194
-1.95772074352968 0.495730895348582
-2.12624969840005 1.16752080832811
-2.06842816583668 -0.689607099127106
-2.37330741591874 1.14679073709691
-2.39018434748641 -0.361180775489047
-2.21934619663183 1.02205856145225
-2.19858869176329 0.0321302060908945
1.10030752013391 0.860230593245533
0.730035752246062 0.596636784545418
1.23796221659453 0.612769614333371
0.395980710562889 -1.75229858398514
1.06901265623960 -0.211050862633647
0.383174475987114 -0.589088965722193
0.746215185580377 0.776098608766709
-0.496201068006129 -1.84269556949638
0.923129796737431 0.0302295549588077
0.00495143780650871 -1.02596403732389
-0.124281108093219 -2.64918765259090
0.437265238506424 -0.0586846858581760
0.549792126592992 -1.76666307900171
0.714770518429262 -0.184815166484382
-0.0371339806719297 -0.431350035919633
0.872966018474250 0.508295314415273
0.346844440799832 -0.189985178614466
0.152880381053472 -0.788085297090142
1.21124542423444 -1.62790202112846
0.156417163578196 -1.29875232891050
0.735791135537219 0.401126570248885
0.470792483676532 -0.415217206131680
1.22388807504403 -0.937773165086814
0.627279600231826 -0.415419947028686
0.698133985336190 -0.0632819273014206
0.870620328215835 0.249871517845242
1.25003445866275 -0.0823442389434431
1.35370481019450 0.327722365822153
0.659915359649250 -0.223597000167979
-0.0471236447211597 -1.05368247816741
0.121128417400412 -1.55837168956507
0.0140710866007487 -1.56813894313840
0.235222818975321 -0.773333046281646
1.05316323317206 -0.634774729305402
0.220677797156699 -0.279909968621073
0.430341476713787 0.852281697154445
1.04590946111265 0.520453696157683
1.03241950881290 -1.38781716762055
0.0668436673617666 -0.211910813930204
0.274505447436587 -1.32537578085168
0.271425764670620 -1.11570381243558
0.621089830946741 0.0274506709978046
0.328903506457842 -0.985598883763833
-0.372380114621411 -2.01119457605980
0.281999617970590 -0.851099454545845
0.0887557702224096 -0.174324544331148
0.223607676665854 -0.379214256409087
0.571967341693057 -0.153206717308028
-0.455486948803962 -1.53432438068788
0.251402252309636 -0.593871222060355
1.84150338645482 0.868786147264828
1.14933941416981 -0.698984450845645
2.19898270027627 0.552618780551384
1.43388176486790 -0.0498435417617587
1.86165398830779 0.290220535935809
2.74500070081969 0.785799704159685
0.357177895625210 -1.55488557249365
2.29531637451915 0.408149356863061
1.99505169024551 -0.721448439846371
2.25998344407884 1.91502747107928
1.36134878398531 0.691631011499905
1.59372545693795 -0.426818952656741
1.87796051113409 0.412949339203311
1.24890257443547 -1.16349352357816
1.45917315700813 -0.442664601834978
1.58649439864337 0.674774813132046
1.46636772102851 0.252347085727036
2.42924030093571 2.54822056527013
3.29809226641255 -0.00235343587272177
1.24979406018816 -1.71184899071237
2.03368323142868 0.904369044486726
0.970663302005081 -0.569267277965818
2.88838806680663 0.396463170625287
1.32475563655861 -0.485135293486995
1.69855040646181 1.01076227706927
1.95119099025002 0.999984474306318
1.16799162725452 -0.317831851008113
1.01637609822602 0.0653241212065782
1.78004554289349 -0.192627479858818
1.85855159177699 0.553527164026207
2.42736549094542 0.245830911619345
2.30834922706014 2.61741528404554
1.85415981777379 -0.184055790370030
1.10756129219332 -0.294997832217552
1.19347091639304 -0.814439294423699
2.79159729280499 0.841927657717863
1.57487925633390 1.06889360300461
1.34254676764379 0.420846092290459
0.920349720485088 0.0191661621187343
1.84736314547313 0.670177571688802
2.00942543830962 0.608358978317639
1.89676252747561 0.683734258412757
1.14933941416981 -0.698984450845645
2.03648602144585 0.861797777652503
1.99500750598298 1.04504903502442
1.86427657131500 0.381543630923962
1.55328823048458 -0.902290843047121
1.51576710303099 0.265903772450991
1.37179554779330 1.01296839034343
0.956095566421630 -0.0222095406309480

累计贡献率

可见:前两个主成分已经占了95%的贡献程度。这两个主成分可以近似表示整个数据。

4. pca_data.m

其中normlization.m见MATLAB实例:聚类初始化方法与数据归一化方法

function data=pca_data(data, choose)
% PCA降维,保留90%的特征信息
data = normlization(data, choose); %归一化
score = 0.90; %保留90%的特征信息
[num,dim] = size(data);
xbar = mean(data,1);
means = bsxfun(@minus, data, xbar);
cov = means'*means/num;
[V,D] = eig(cov);
eigval = diag(D);
[~,idx] = sort(eigval,'descend');
eigval = eigval(idx);
V = V(idx,:);
p = 0;
for i=1:dim
perc = sum(eigval(1:i))/sum(eigval);
if perc > score
p = i;
break;
end
end
E = V(1:p,:);
data= means*E';

参考:

Junhao Hua. Distributed Variational Bayesian Algorithms. Github, 2017.

MATLAB实例:PCA(主成成分分析)详解

MATLAB实例:PCA降维的更多相关文章

  1. MATLAB实例:PCA(主成成分分析)详解

    MATLAB实例:PCA(主成成分分析)详解 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 主成成分分析 2. MATLAB解释 详细信息请看: ...

  2. PCA降维2

    前言 本文为模式识别系列第一篇,主要介绍主成分分析算法(Principal Component Analysis,PCA)的理论,并附上相关代码.全文主要分六个部分展开: 1)简单示例.通过简单的例子 ...

  3. [综] PCA降维

    http://blog.json.tw/using-matlab-implementing-pca-dimension-reduction 設有m筆資料, 每筆資料皆為n維, 如此可將他們視為一個mx ...

  4. 机器学习公开课笔记(8):k-means聚类和PCA降维

    K-Means算法 非监督式学习对一组无标签的数据试图发现其内在的结构,主要用途包括: 市场划分(Market Segmentation) 社交网络分析(Social Network Analysis ...

  5. Python机器学习笔记 使用scikit-learn工具进行PCA降维

    之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多 ...

  6. PCA降维—降维后样本维度大小

    之前对PCA的原理挺熟悉,但一直没有真正使用过.最近在做降维,实际用到了PCA方法对样本特征进行降维,但在实践过程中遇到了降维后样本维数大小限制问题. MATLAB自带PCA函数:[coeff, sc ...

  7. 一步步教你轻松学主成分分析PCA降维算法

    一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...

  8. PCA 降维算法详解 以及代码示例

    转载地址:http://blog.csdn.net/watkinsong/article/details/38536463 1. 前言 PCA : principal component analys ...

  9. PCA降维技术

    PCA降维技术 PCA 降维 Fly Time: 2017-2-28 主成分分析(PCA) PCA Algorithm 实例 主成分分析(PCA) 主成分分析(Principal Component ...

随机推荐

  1. docker-compose 使用自定义网络并绑定 IP

    0x00 事件 原先使用了 docker network create mynetwork 的方式创建了自定义网络,在使用 docker-compose 工具运行服务的时候,需要容器使用 mynetw ...

  2. Fundebug前端异常监控插件更新至2.0.0,全面支持TypeScript

    摘要: 是时候支持TS了! Fundebug前端异常监控服务 Fundebug提供专业的前端异常监控服务,我们的插件可以提供全方位的异常监控,可以帮助开发者第一时间定位各种前端异常,包括但不限于Jav ...

  3. sched_yield()和nanosleep()对进程调度的影响

    关键词:sched_yield().nanosleep()等等. sched_yield()主动放弃CPU执行权,nanosleep()是睡眠一段时间后再唤醒. 1. sched_yield()实现 ...

  4. 201871010115-马北《面向对象程序设计(java)》第一周学习总结

    博文正文开头格式:(3分) 项目 内容 这个作业属于哪个课程 <https://www.cnblogs.com/nwnu-daizh/> 这个作业的要求在哪里 <https://ww ...

  5. poj 3468 A Simple Problem with Integers 线段树 题解《挑战程序设计竞赛》

    地址 http://poj.org/problem?id=3468 线段树模板 要背下此模板 线段树 #include <iostream> #include <vector> ...

  6. USACO Max Flow

    洛谷 P3128 [USACO15DEC]最大流Max Flow 洛谷传送门 JDOJ 3027: USACO 2015 Dec Platinum 1.Max Flow JDOJ传送门 Descrip ...

  7. python调用C++ DLL 传参技巧

    结构体传参:http://www.jb51.net/article/52513.htm 准备工作: C++文件(cpp):(注意在函数声明上加上extern "C" 的修饰) #i ...

  8. The trap of Bash trap

    Can you spot the problem with the following Bash script? resource_created="false" function ...

  9. Redis 笔记整理:回收策略与 LRU 算法

    Redis的回收策略 noeviction:返回错误当内存限制达到并且客户端尝试执行会让更多内存被使用的命令(大部分的写入指令,但DEL和几个例外) allkeys-lru: 尝试回收最少使用的键(L ...

  10. 《细说PHP》第四版 样章 第18章 数据库抽象层PDO 4

    18.4  创建PDO对象 使用PDO在与不同数据库管理系统之间交互时,PDO对象中的成员的方法是统一各种数据库的访问接口,所以在使用PDO与数据库交互之前,首先要创建一个PDO对象.在通过构造方法创 ...