java二叉树遍历——深度优先(DFS)与广度优先(BFS) 递归版与非递归版
介绍
深度优先遍历:从根节点出发,沿着左子树方向进行纵向遍历,直到找到叶子节点为止。然后回溯到前一个节点,进行右子树节点的遍历,直到遍历完所有可达节点为止。
广度优先遍历:从根节点出发,在横向遍历二叉树层段节点的基础上纵向遍历二叉树的层次。
DFS实现:
数据结构:栈
父节点入栈,父节点出栈,先右子节点入栈,后左子节点入栈。递归遍历全部节点即可
BFS实现:
数据结构:队列
父节点入队,父节点出队列,先左子节点入队,后右子节点入队。递归遍历全部节点即可
树的实现
public class TreeNode<V> {
private V value;
private List<TreeNode<V>> childList;//子节点列表
public TreeNode(V value) {
this.value = value;
}
public TreeNode(V value, List<TreeNode<V>> childList) {
this.value = value;
this.childList = childList;
}
public V getValue() {
return value;
}
public void setValue(V value) {
this.value = value;
}
public List<TreeNode<V>> getChildList() {
return childList;
}
public void setChildList(List<TreeNode<V>> childList) {
this.childList = childList;
}
}
深度优先搜索算法(DFS)
深度优先搜索算法是指沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。属于盲目搜索。
递归实现
public static <V> void dfs(TreeNode<V> tree, int depth) {
if (tree != null) {
//打印节点值以及深度
System.out.println(tree.getValue().toString() + ", " + depth);
if (tree.getChildList() != null && !tree.getChildList().isEmpty()) {
for (TreeNode<V> item : tree.getChildList()) {
dfs(item, depth + 1);
}
}
}
}
非递归实现
public static <V> void dfsNotRecursive(TreeNode<V> tree) {
if (tree != null) {
//次数之所以用 Map 只是为了保存节点的深度,
//如果没有这个需求可以改为 Stack<TreeNode<V>>
Stack<Map<TreeNode<V>, Integer>> stack = new Stack<>();
Map<TreeNode<V>, Integer> root = new HashMap<>();
root.put(tree, 0);
stack.push(root);
while (!stack.isEmpty()) {
Map<TreeNode<V>, Integer> item = stack.pop();
TreeNode<V> node = item.keySet().iterator().next();
int depth = item.get(node);
//打印节点值以及深度
System.out.println(tree.getValue().toString() + ", " + depth);
if (node.getChildList() != null && !node.getChildList().isEmpty()) {
for (TreeNode<V> treeNode : node.getChildList()) {
Map<TreeNode<V>, Integer> map = new HashMap<>();
map.put(treeNode, depth + 1);
stack.push(map);
}
}
}
}
}
分类
一般来说 DFS 算法又分为如下三种:
1.前序遍历(Pre-Order Traversal) :指先访问根,然后访问子树的遍历方式
private static <V> void dfs(TreeNode<V> tree, int depth) {
if (d != null) {
//打印节点值以及深度
System.out.println(tree.getValue().toString() + ", " + depth);
if (tree.getChildList() != null && !tree.getChildList().isEmpty()) {
for (TreeNode<V> item : tree.getChildList()) {
dfs(item, depth + 1);
}
}
}
}
2.后序遍历(Post-Order Traversal):指先访问子树,然后访问根的遍历方式
private static <V> void dfs(TreeNode<V> tree, int depth) {
if (d != null) {
if (tree.getChildList() != null && !tree.getChildList().isEmpty()) {
for (TreeNode<V> item : tree.getChildList()) {
dfs(item, depth + 1);
}
}
//打印节点值以及深度
System.out.println(tree.getValue().toString() + ", " + depth);
}
}
3.中序遍历(In-Order Traversal):指先访问左(右)子树,然后访问根,最后访问右(左)子树的遍历方式。
中序遍历一般是用二叉树实现:
private static <V> void dfs(TreeNode<V> root, int depth) {
if (root.getLeft() != null){
dfs(root.getLeft(), depth + 1);
}
if (root.getRight() != null){
dfs(root.getRight(), depth + 1);
}
//打印节点值以及深度
System.out.println(d.getValue().toString() + ", " + depth);
}
广度优先搜索算法(Breadth-First Search,BFS)
广度优先搜索算法是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。
递归实现
public static <V> void bfs(List<TreeNode<V>> children, int depth) {
List<TreeNode<V>> thisChildren, allChildren = new ArrayList<>();
for (TreeNode<V> child: children) {
//打印节点值以及深度
System.out.println(child.getValue().toString() + ", " + depth);
thisChildren = child.getChildList();
if (thisChildren != null && thisChildren.size() > 0) {
allChildren.addAll(thisChildren);
}
}
if (allChildren.size() > 0) {
bfs(allChildren, depth + 1);
}
}
递归实现的方式我自己想了好久没想出来,最后还是在网上搜到的算法。
可以看到非递归实现有个问题就是无法遍历根节点,不过问题不大,而且我也还没想出来其他更优雅的办法来实现。
非递归实现
public static <V> void bfsNotRecursive(TreeNode<V> tree) {
if (tree != null) {
//跟上面一样,使用 Map 也只是为了保存树的深度,没这个需要可以不用 Map
Queue<Map<TreeNode<V>, Integer>> queue = new ArrayDeque<>();
Map<TreeNode<V>, Integer> root = new HashMap<>();
root.put(tree, 0);
queue.offer(root);
while (!queue.isEmpty()) {
Map<TreeNode<V>, Integer> itemMap = queue.poll();
TreeNode<V> itemTreeNode = itemMap.keySet().iterator().next();
int depth = itemMap.get(itemTreeNode);
//打印节点值以及深度
System.out.println(itemTreeNode.getValue().toString() + ", " + depth);
if (itemTreeNode.getChildList() != null &&
!itemTreeNode.getChildList().isEmpty()) {
for (TreeNode<V> child : itemTreeNode.getChildList()) {
Map<TreeNode<V>, Integer> map = new HashMap<>();
map.put(child, depth + 1);
queue.offer(map);
}
}
}
}
}
java二叉树遍历——深度优先(DFS)与广度优先(BFS) 递归版与非递归版的更多相关文章
- 【Python算法】遍历(Traversal)、深度优先(DFS)、广度优先(BFS)
图结构: 非常强大的结构化思维(或数学)模型.如果您能用图的处理方式来规范化某个问题,即使这个问题本身看上去并不像个图问题,也能使您离解决问题更进一步. 在众多图算法中,我们常会用到一种非常实用的思维 ...
- JAVA 遍历文件夹下的所有文件(递归调用和非递归调用)
JAVA 遍历文件夹下的所有文件(递归调用和非递归调用) 1.不使用递归的方法调用. public void traverseFolder1(String path) { int fileNum = ...
- [复习] JAVA 遍历目录 (递归调用和非递归)
JAVA 遍历文件夹下的所有文件(递归调用和非递归调用) 1.不使用递归的方法调用. public void traverseFolder1(String path) { int fileNum = ...
- 二叉树中序遍历,先序遍历,后序遍历(递归栈,非递归栈,Morris Traversal)
例题 中序遍历94. Binary Tree Inorder Traversal 先序遍历144. Binary Tree Preorder Traversal 后序遍历145. Binary Tre ...
- 左神算法基础班4_1&2实现二叉树的先序、中序、后序遍历,包括递归方式和非递归
Problem: 实现二叉树的先序.中序.后序遍历,包括递归方式和非递归方式 Solution: 切记递归规则: 先遍历根节点,然后是左孩子,右孩子, 根据不同的打印位置来确定中序.前序.后续遍历. ...
- 深度优先dfs与广度bfs优先搜索总结+例题
DFS(Deep First Search)深度优先搜索 深度优先遍历(dfs)是对一个连通图进行遍历的算法.它的思想是从一个顶点开始,沿着一条路一直走到底,如果发现不能到达目标解,那就返回到上一个节 ...
- java 二叉树遍历
package com.lever; import java.util.LinkedList;import java.util.Queue; /** * 二叉树遍历 * @author lckxxy ...
- Java 二叉树遍历相关操作
BST二叉搜索树节点定义: /** * BST树的节点类型 * @param <T> */ class BSTNode<T extends Comparable<T>&g ...
- Java 二叉树遍历右视图-LeetCode199
题目如下: 题目给出的例子不太好,容易让人误解成不断顺着右节点访问就好了,但是题目意思并不是这样. 换成通俗的意思:按层遍历二叉树,输出每层的最右端结点. 这就明白时一道二叉树层序遍历的问题,用一个队 ...
随机推荐
- leetcode347 python
通过维护最小堆排序,使用heapq模块 一般使用规则:创建列表 heap = [] 函 数 ...
- Verilog hdl 实现单周期cpu
参考计组实验测试指令 - 简书,添加了一些细节. 1.添加 bne指令 修改 ctrl.v 之后修改mipstestloopjal_sim.asm,mars dump 为 bnetest. ...
- mybatis(五)mybatis工作流程
转载:https://www.cnblogs.com/wuzhenzhao/p/11103017.html 先来看一下MyBatis 的编程式使用的方法: public void testMapper ...
- 牛客多校第九场 && ZOJ3774 The power of Fibonacci(二次剩余定理+斐波那契数列通项/循环节)题解
题意1.1: 求\(\sum_{i=1}^n Fib^m\mod 1e9+9\),\(n\in[1, 1e9], m\in[1, 1e4]\) 思路1.1 我们首先需要知道斐波那契数列的通项是:\(F ...
- 二、mycat基础知识、基本配置
官网 http://www.mycat.io/ Mycat 概要介绍 https://github.com/MyCATApache/Mycat-Server 入门指南 https://github.c ...
- surge & free online docs website service
surge & free online docs website service surge 自定义域的域名 https://surge.sh/help/adding-a-custom-dom ...
- App icons generator
App icons generator https://appicon.co/ Drag or select an app icon image (1024x1024) to generate dif ...
- js multiple packages & lerna.js
js multiple packages & lerna.js
- React render twice bug
React render twice bug React bug constructor render twice bug update render twice bug StrictMode htt ...
- How to create a folder symbol link in macOS
How to create a folder symbol link in macOS macOS 创建文件夹链接 Make AliasMake Alias Symbolic Links 符号链接 $ ...