java二叉树遍历——深度优先(DFS)与广度优先(BFS) 递归版与非递归版
介绍
深度优先遍历:从根节点出发,沿着左子树方向进行纵向遍历,直到找到叶子节点为止。然后回溯到前一个节点,进行右子树节点的遍历,直到遍历完所有可达节点为止。
广度优先遍历:从根节点出发,在横向遍历二叉树层段节点的基础上纵向遍历二叉树的层次。
DFS实现:
数据结构:栈
父节点入栈,父节点出栈,先右子节点入栈,后左子节点入栈。递归遍历全部节点即可
BFS实现:
数据结构:队列
父节点入队,父节点出队列,先左子节点入队,后右子节点入队。递归遍历全部节点即可
树的实现
public class TreeNode<V> {
private V value;
private List<TreeNode<V>> childList;//子节点列表
public TreeNode(V value) {
this.value = value;
}
public TreeNode(V value, List<TreeNode<V>> childList) {
this.value = value;
this.childList = childList;
}
public V getValue() {
return value;
}
public void setValue(V value) {
this.value = value;
}
public List<TreeNode<V>> getChildList() {
return childList;
}
public void setChildList(List<TreeNode<V>> childList) {
this.childList = childList;
}
}
深度优先搜索算法(DFS)
深度优先搜索算法是指沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。属于盲目搜索。
递归实现
public static <V> void dfs(TreeNode<V> tree, int depth) {
if (tree != null) {
//打印节点值以及深度
System.out.println(tree.getValue().toString() + ", " + depth);
if (tree.getChildList() != null && !tree.getChildList().isEmpty()) {
for (TreeNode<V> item : tree.getChildList()) {
dfs(item, depth + 1);
}
}
}
}
非递归实现
public static <V> void dfsNotRecursive(TreeNode<V> tree) {
if (tree != null) {
//次数之所以用 Map 只是为了保存节点的深度,
//如果没有这个需求可以改为 Stack<TreeNode<V>>
Stack<Map<TreeNode<V>, Integer>> stack = new Stack<>();
Map<TreeNode<V>, Integer> root = new HashMap<>();
root.put(tree, 0);
stack.push(root);
while (!stack.isEmpty()) {
Map<TreeNode<V>, Integer> item = stack.pop();
TreeNode<V> node = item.keySet().iterator().next();
int depth = item.get(node);
//打印节点值以及深度
System.out.println(tree.getValue().toString() + ", " + depth);
if (node.getChildList() != null && !node.getChildList().isEmpty()) {
for (TreeNode<V> treeNode : node.getChildList()) {
Map<TreeNode<V>, Integer> map = new HashMap<>();
map.put(treeNode, depth + 1);
stack.push(map);
}
}
}
}
}
分类
一般来说 DFS 算法又分为如下三种:
1.前序遍历(Pre-Order Traversal) :指先访问根,然后访问子树的遍历方式
private static <V> void dfs(TreeNode<V> tree, int depth) {
if (d != null) {
//打印节点值以及深度
System.out.println(tree.getValue().toString() + ", " + depth);
if (tree.getChildList() != null && !tree.getChildList().isEmpty()) {
for (TreeNode<V> item : tree.getChildList()) {
dfs(item, depth + 1);
}
}
}
}
2.后序遍历(Post-Order Traversal):指先访问子树,然后访问根的遍历方式
private static <V> void dfs(TreeNode<V> tree, int depth) {
if (d != null) {
if (tree.getChildList() != null && !tree.getChildList().isEmpty()) {
for (TreeNode<V> item : tree.getChildList()) {
dfs(item, depth + 1);
}
}
//打印节点值以及深度
System.out.println(tree.getValue().toString() + ", " + depth);
}
}
3.中序遍历(In-Order Traversal):指先访问左(右)子树,然后访问根,最后访问右(左)子树的遍历方式。
中序遍历一般是用二叉树实现:
private static <V> void dfs(TreeNode<V> root, int depth) {
if (root.getLeft() != null){
dfs(root.getLeft(), depth + 1);
}
if (root.getRight() != null){
dfs(root.getRight(), depth + 1);
}
//打印节点值以及深度
System.out.println(d.getValue().toString() + ", " + depth);
}
广度优先搜索算法(Breadth-First Search,BFS)
广度优先搜索算法是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。
递归实现
public static <V> void bfs(List<TreeNode<V>> children, int depth) {
List<TreeNode<V>> thisChildren, allChildren = new ArrayList<>();
for (TreeNode<V> child: children) {
//打印节点值以及深度
System.out.println(child.getValue().toString() + ", " + depth);
thisChildren = child.getChildList();
if (thisChildren != null && thisChildren.size() > 0) {
allChildren.addAll(thisChildren);
}
}
if (allChildren.size() > 0) {
bfs(allChildren, depth + 1);
}
}
递归实现的方式我自己想了好久没想出来,最后还是在网上搜到的算法。
可以看到非递归实现有个问题就是无法遍历根节点,不过问题不大,而且我也还没想出来其他更优雅的办法来实现。
非递归实现
public static <V> void bfsNotRecursive(TreeNode<V> tree) {
if (tree != null) {
//跟上面一样,使用 Map 也只是为了保存树的深度,没这个需要可以不用 Map
Queue<Map<TreeNode<V>, Integer>> queue = new ArrayDeque<>();
Map<TreeNode<V>, Integer> root = new HashMap<>();
root.put(tree, 0);
queue.offer(root);
while (!queue.isEmpty()) {
Map<TreeNode<V>, Integer> itemMap = queue.poll();
TreeNode<V> itemTreeNode = itemMap.keySet().iterator().next();
int depth = itemMap.get(itemTreeNode);
//打印节点值以及深度
System.out.println(itemTreeNode.getValue().toString() + ", " + depth);
if (itemTreeNode.getChildList() != null &&
!itemTreeNode.getChildList().isEmpty()) {
for (TreeNode<V> child : itemTreeNode.getChildList()) {
Map<TreeNode<V>, Integer> map = new HashMap<>();
map.put(child, depth + 1);
queue.offer(map);
}
}
}
}
}
java二叉树遍历——深度优先(DFS)与广度优先(BFS) 递归版与非递归版的更多相关文章
- 【Python算法】遍历(Traversal)、深度优先(DFS)、广度优先(BFS)
图结构: 非常强大的结构化思维(或数学)模型.如果您能用图的处理方式来规范化某个问题,即使这个问题本身看上去并不像个图问题,也能使您离解决问题更进一步. 在众多图算法中,我们常会用到一种非常实用的思维 ...
- JAVA 遍历文件夹下的所有文件(递归调用和非递归调用)
JAVA 遍历文件夹下的所有文件(递归调用和非递归调用) 1.不使用递归的方法调用. public void traverseFolder1(String path) { int fileNum = ...
- [复习] JAVA 遍历目录 (递归调用和非递归)
JAVA 遍历文件夹下的所有文件(递归调用和非递归调用) 1.不使用递归的方法调用. public void traverseFolder1(String path) { int fileNum = ...
- 二叉树中序遍历,先序遍历,后序遍历(递归栈,非递归栈,Morris Traversal)
例题 中序遍历94. Binary Tree Inorder Traversal 先序遍历144. Binary Tree Preorder Traversal 后序遍历145. Binary Tre ...
- 左神算法基础班4_1&2实现二叉树的先序、中序、后序遍历,包括递归方式和非递归
Problem: 实现二叉树的先序.中序.后序遍历,包括递归方式和非递归方式 Solution: 切记递归规则: 先遍历根节点,然后是左孩子,右孩子, 根据不同的打印位置来确定中序.前序.后续遍历. ...
- 深度优先dfs与广度bfs优先搜索总结+例题
DFS(Deep First Search)深度优先搜索 深度优先遍历(dfs)是对一个连通图进行遍历的算法.它的思想是从一个顶点开始,沿着一条路一直走到底,如果发现不能到达目标解,那就返回到上一个节 ...
- java 二叉树遍历
package com.lever; import java.util.LinkedList;import java.util.Queue; /** * 二叉树遍历 * @author lckxxy ...
- Java 二叉树遍历相关操作
BST二叉搜索树节点定义: /** * BST树的节点类型 * @param <T> */ class BSTNode<T extends Comparable<T>&g ...
- Java 二叉树遍历右视图-LeetCode199
题目如下: 题目给出的例子不太好,容易让人误解成不断顺着右节点访问就好了,但是题目意思并不是这样. 换成通俗的意思:按层遍历二叉树,输出每层的最右端结点. 这就明白时一道二叉树层序遍历的问题,用一个队 ...
随机推荐
- hdu2333-贪心,如何去后效性,背包太大怎么办,如何最大化最小值,从无序序列中发掘有序性质
补充一下我理解的中文题意.. 你要重新组装电脑..电脑有一些部件..你的预算有b,b(1~1e9),有n个部件..每个部件有类型和名称以及价钱和质量现在你要在不超过预算b的情况下..每个类型都买一个部 ...
- Adaptive Threshold
Adaptive Threshold 1. Otsu's Binarization: Using a discriminant analysis to partition the image into ...
- CORS All In One
CORS All In One 跨域资源共享 https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS CORS 请求类型 简单请求 预检请求 Ac ...
- how to create react custom hooks with arguments
how to create react custom hooks with arguments React Hooks & Custom Hooks // reusable custom ho ...
- HTMLMediaElement.srcObject & URL.createObjectURL & HTMLMediaElement.src
HTMLMediaElement.srcObject & URL.createObjectURL & HTMLMediaElement.src Uncaught TypeError: ...
- nasm aat函数 x86
xxx.asm: %define p1 ebp+8 %define p2 ebp+12 %define p3 ebp+16 section .text global dllmain dllmain: ...
- .Net按模板导出Excel
最近在项目中遇到需求 需要按照一定的模板导出数据 还是直接上代码 这里贴一部分模板长什么样吧 然后就是代码 大致就是找到模板 复制一份临时文件 然后修改临时文件然后导出数据 代码如下 string a ...
- CMD 中运行 xx 命令提示 不是内部或外部命令,也不是可运行的程序或批处理文件的问题
出现这个问题的原因一般有2个 这个命令依赖某个软件,而你又没有安装 这里你只需要去下载安装好对应的软件,基本上就可以解决上面的问题了. 软件安装好了,但是需要配置环境变量 第二个原因就按照下图,去设置 ...
- JS中indexOf的用法
String.IndexOf(Char, [startIndex], [count]):返回指定字符在原字符串中的第一个匹配项的索引.可指定字符开始检索位置和指定长度的字符,若没有找到该字符,则返回 ...
- 用代码来实践Web缓存
Web缓存是可以自动保存常见文档副本的HTTP设备.当Web请求抵达缓存时,如果本地有"已缓存的副本",就可以从本地存储设备而不是原始服务器中提取这个文档. 上面是<HTTP ...