java二叉树遍历——深度优先(DFS)与广度优先(BFS) 递归版与非递归版
介绍
深度优先遍历:从根节点出发,沿着左子树方向进行纵向遍历,直到找到叶子节点为止。然后回溯到前一个节点,进行右子树节点的遍历,直到遍历完所有可达节点为止。
广度优先遍历:从根节点出发,在横向遍历二叉树层段节点的基础上纵向遍历二叉树的层次。
DFS实现:
数据结构:栈
父节点入栈,父节点出栈,先右子节点入栈,后左子节点入栈。递归遍历全部节点即可
BFS实现:
数据结构:队列
父节点入队,父节点出队列,先左子节点入队,后右子节点入队。递归遍历全部节点即可
树的实现
public class TreeNode<V> {
private V value;
private List<TreeNode<V>> childList;//子节点列表
public TreeNode(V value) {
this.value = value;
}
public TreeNode(V value, List<TreeNode<V>> childList) {
this.value = value;
this.childList = childList;
}
public V getValue() {
return value;
}
public void setValue(V value) {
this.value = value;
}
public List<TreeNode<V>> getChildList() {
return childList;
}
public void setChildList(List<TreeNode<V>> childList) {
this.childList = childList;
}
}
深度优先搜索算法(DFS)
深度优先搜索算法是指沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。属于盲目搜索。
递归实现
public static <V> void dfs(TreeNode<V> tree, int depth) {
if (tree != null) {
//打印节点值以及深度
System.out.println(tree.getValue().toString() + ", " + depth);
if (tree.getChildList() != null && !tree.getChildList().isEmpty()) {
for (TreeNode<V> item : tree.getChildList()) {
dfs(item, depth + 1);
}
}
}
}
非递归实现
public static <V> void dfsNotRecursive(TreeNode<V> tree) {
if (tree != null) {
//次数之所以用 Map 只是为了保存节点的深度,
//如果没有这个需求可以改为 Stack<TreeNode<V>>
Stack<Map<TreeNode<V>, Integer>> stack = new Stack<>();
Map<TreeNode<V>, Integer> root = new HashMap<>();
root.put(tree, 0);
stack.push(root);
while (!stack.isEmpty()) {
Map<TreeNode<V>, Integer> item = stack.pop();
TreeNode<V> node = item.keySet().iterator().next();
int depth = item.get(node);
//打印节点值以及深度
System.out.println(tree.getValue().toString() + ", " + depth);
if (node.getChildList() != null && !node.getChildList().isEmpty()) {
for (TreeNode<V> treeNode : node.getChildList()) {
Map<TreeNode<V>, Integer> map = new HashMap<>();
map.put(treeNode, depth + 1);
stack.push(map);
}
}
}
}
}
分类
一般来说 DFS 算法又分为如下三种:
1.前序遍历(Pre-Order Traversal) :指先访问根,然后访问子树的遍历方式
private static <V> void dfs(TreeNode<V> tree, int depth) {
if (d != null) {
//打印节点值以及深度
System.out.println(tree.getValue().toString() + ", " + depth);
if (tree.getChildList() != null && !tree.getChildList().isEmpty()) {
for (TreeNode<V> item : tree.getChildList()) {
dfs(item, depth + 1);
}
}
}
}
2.后序遍历(Post-Order Traversal):指先访问子树,然后访问根的遍历方式
private static <V> void dfs(TreeNode<V> tree, int depth) {
if (d != null) {
if (tree.getChildList() != null && !tree.getChildList().isEmpty()) {
for (TreeNode<V> item : tree.getChildList()) {
dfs(item, depth + 1);
}
}
//打印节点值以及深度
System.out.println(tree.getValue().toString() + ", " + depth);
}
}
3.中序遍历(In-Order Traversal):指先访问左(右)子树,然后访问根,最后访问右(左)子树的遍历方式。
中序遍历一般是用二叉树实现:
private static <V> void dfs(TreeNode<V> root, int depth) {
if (root.getLeft() != null){
dfs(root.getLeft(), depth + 1);
}
if (root.getRight() != null){
dfs(root.getRight(), depth + 1);
}
//打印节点值以及深度
System.out.println(d.getValue().toString() + ", " + depth);
}
广度优先搜索算法(Breadth-First Search,BFS)
广度优先搜索算法是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。
递归实现
public static <V> void bfs(List<TreeNode<V>> children, int depth) {
List<TreeNode<V>> thisChildren, allChildren = new ArrayList<>();
for (TreeNode<V> child: children) {
//打印节点值以及深度
System.out.println(child.getValue().toString() + ", " + depth);
thisChildren = child.getChildList();
if (thisChildren != null && thisChildren.size() > 0) {
allChildren.addAll(thisChildren);
}
}
if (allChildren.size() > 0) {
bfs(allChildren, depth + 1);
}
}
递归实现的方式我自己想了好久没想出来,最后还是在网上搜到的算法。
可以看到非递归实现有个问题就是无法遍历根节点,不过问题不大,而且我也还没想出来其他更优雅的办法来实现。
非递归实现
public static <V> void bfsNotRecursive(TreeNode<V> tree) {
if (tree != null) {
//跟上面一样,使用 Map 也只是为了保存树的深度,没这个需要可以不用 Map
Queue<Map<TreeNode<V>, Integer>> queue = new ArrayDeque<>();
Map<TreeNode<V>, Integer> root = new HashMap<>();
root.put(tree, 0);
queue.offer(root);
while (!queue.isEmpty()) {
Map<TreeNode<V>, Integer> itemMap = queue.poll();
TreeNode<V> itemTreeNode = itemMap.keySet().iterator().next();
int depth = itemMap.get(itemTreeNode);
//打印节点值以及深度
System.out.println(itemTreeNode.getValue().toString() + ", " + depth);
if (itemTreeNode.getChildList() != null &&
!itemTreeNode.getChildList().isEmpty()) {
for (TreeNode<V> child : itemTreeNode.getChildList()) {
Map<TreeNode<V>, Integer> map = new HashMap<>();
map.put(child, depth + 1);
queue.offer(map);
}
}
}
}
}
java二叉树遍历——深度优先(DFS)与广度优先(BFS) 递归版与非递归版的更多相关文章
- 【Python算法】遍历(Traversal)、深度优先(DFS)、广度优先(BFS)
图结构: 非常强大的结构化思维(或数学)模型.如果您能用图的处理方式来规范化某个问题,即使这个问题本身看上去并不像个图问题,也能使您离解决问题更进一步. 在众多图算法中,我们常会用到一种非常实用的思维 ...
- JAVA 遍历文件夹下的所有文件(递归调用和非递归调用)
JAVA 遍历文件夹下的所有文件(递归调用和非递归调用) 1.不使用递归的方法调用. public void traverseFolder1(String path) { int fileNum = ...
- [复习] JAVA 遍历目录 (递归调用和非递归)
JAVA 遍历文件夹下的所有文件(递归调用和非递归调用) 1.不使用递归的方法调用. public void traverseFolder1(String path) { int fileNum = ...
- 二叉树中序遍历,先序遍历,后序遍历(递归栈,非递归栈,Morris Traversal)
例题 中序遍历94. Binary Tree Inorder Traversal 先序遍历144. Binary Tree Preorder Traversal 后序遍历145. Binary Tre ...
- 左神算法基础班4_1&2实现二叉树的先序、中序、后序遍历,包括递归方式和非递归
Problem: 实现二叉树的先序.中序.后序遍历,包括递归方式和非递归方式 Solution: 切记递归规则: 先遍历根节点,然后是左孩子,右孩子, 根据不同的打印位置来确定中序.前序.后续遍历. ...
- 深度优先dfs与广度bfs优先搜索总结+例题
DFS(Deep First Search)深度优先搜索 深度优先遍历(dfs)是对一个连通图进行遍历的算法.它的思想是从一个顶点开始,沿着一条路一直走到底,如果发现不能到达目标解,那就返回到上一个节 ...
- java 二叉树遍历
package com.lever; import java.util.LinkedList;import java.util.Queue; /** * 二叉树遍历 * @author lckxxy ...
- Java 二叉树遍历相关操作
BST二叉搜索树节点定义: /** * BST树的节点类型 * @param <T> */ class BSTNode<T extends Comparable<T>&g ...
- Java 二叉树遍历右视图-LeetCode199
题目如下: 题目给出的例子不太好,容易让人误解成不断顺着右节点访问就好了,但是题目意思并不是这样. 换成通俗的意思:按层遍历二叉树,输出每层的最右端结点. 这就明白时一道二叉树层序遍历的问题,用一个队 ...
随机推荐
- 一个http请求的完整详细过程
整个流程 域名解析: 与服务器建立连接:tcp连接: 发起HTTP请求: 服务器响应HTTP请求,浏览器得到html代码: 浏览器解析html代码,并请求html代码中的资源(如js.css.图片): ...
- IOS键盘收起后,页面底部留白处理
环境:vue+vant 的H5页面 场景:输入框输入信息时,如登录.注册等表单信息 问题:键盘收回后页面底部留白,导致dialog组件按钮位移,视觉上,其中的按钮无法正常工作 解决方案:监听失去焦点时 ...
- BZOJ3211 花神游历各国(分块 区间开根号)
题意:给n个数,可以进行两种操作:给区间[l,r]每个数开方向下取整:算区间[l,r]的和. 思路:我们可以知道,一个数一直开方下去,就会变成0或者1,然后就不会变了.那么当一个区间只剩0或1时,就不 ...
- node os env reader
node os env reader node-os-env-reader.js #!/usr/bin/env node "use strict"; /** * * @author ...
- Vue 3 In Action
Vue 3 In Action $ yarn add vue https://v3.vuejs.org demos refs https://v3.vuejs.org/guide/migration/ ...
- infinite auto load more & infinite scroll & load more
infinite auto load more & infinite scroll & load more https://codepen.io/xgqfrms/pen/NZVvGM ...
- 小程序 怎么发 beta 版本
小程序 怎么发 beta 版本 微信 https://developers.weixin.qq.com/miniprogram/dev/devtools/mydev.html 小程序助手 支付宝 ht ...
- 比起USDT,我为什么建议你选择USDN
2018年1月16日,USDT(泰达币)进入了很多人的视野.因为在这一天,在全球价值排名前50的加密货币中,包括比特币.莱特币以及以太坊在内的大多数的数字虚拟加密货币都遭遇了价格大幅下跌,只有泰达币价 ...
- C++算法代码——众数
好久没更新了-- 题目来自:http://218.5.5.242:9018/JudgeOnline/problem.php?id=1615 题目描述 N 个 1 到 30000 间无序数正整数,其中 ...
- 国际标准时间格式ISO8601
日期表示法 年由4位数字组成YYYY,或者带正负号的四或五位数字表示±YYYYY.以公历公元1年为0001年,以公元前1年为0000年,公元前2年为-0001年,其他以此类推.应用其他纪年法要换算成公 ...