这节课讲动态规划的内容,动态规划是一种通用且有效的算法设计思路,它的主要成分是“子问题”+"重用"。它可以用于斐波那契和最短路径等问题的求解上。

一、斐波那契

首先,我们来看下斐波那契问题是什么?传统做法和动态规划法有什么区别?

从上图就能很明显地看出动态规划采用了memorization的思路,将历史计算结果保存下来,这样就能避免递归过程中的重复计算。

我们总结动态规划在求解斐波那契数的内容如下:

记录召回(Memorized calls)只花常数时间。动态规划大致内含三大做法:recursion + memorization + guessing。对子问题的记录和重用有利于高效地帮助解决最后的大问题。时间上:子问题数 x 每个子问题上的求解时间。

除了上面使用递归recursion方法去做,还有下面这种从下至上的动态规划法:

这种方法的与递归方法做是一样的计算量,但是更省空间。

二、最短路径

动态规划法求解最短路径问题的方法就是猜guessing,递归所有可能的线路去获取最短的路径结果,如下图:

但动态规划法如果单凭猜,是不能处理好如下图所示的循环图上的最短路径问题

为此,动态规划一般会把循环图转化为非循环图后,再进行最短路径的求解,如下图所示:转为非循环图的过程是把原循环图进行分层,其中下图的k是指第k层,具体的运行机制,讲师讲的有些过于仓促,我也没太听明白,该内容后续有待自行补充了解。

[MIT6.006] 19. Daynamic Programming I: Fibonacci, Shortest Path 动态规划I:斐波那契,最短路径的更多相关文章

  1. [MIT6.006] 20. Daynamic Programming II: Text Justification, Blackjack 动态规划II:文本对齐,黑杰克

    这节课通过讲解动态规划在文本对齐(Text Justification)和黑杰克(Blackjack)上的求解过程,来帮助我们理解动态规划的通用求解的五个步骤: 动态规划求解的五个"简单&q ...

  2. [LeetCode] Split Array into Fibonacci Sequence 分割数组成斐波那契序列

    Given a string S of digits, such as S = "123456579", we can split it into a Fibonacci-like ...

  3. [MIT6.006] 22. Daynamic Programming IV: Guitar Fingering, Tetris, Super Mario Bro. 动态规划IV:吉他指弹,俄罗斯方块,超级玛丽奥

    之前我们讲到动态规划五步中有个Guessing猜,一般情况下猜有两种情况: 在猜和递归上:猜的是用于解决更大问题的子问题: 在子问题定义上:如果要猜更多,就要增加更多子问题. 下面我们来看如果像背包问 ...

  4. [MIT6.006] 21. Daynamic Programming III: Parenthesization, Edit Distance, Knapsack 动态规划III:括号问题,编辑距离,背包问题

    这节课主要针对字符串/序列上的问题,了解如果使用动态规划进行求解.上节课我们也讲过使用前缀和后缀的概念,他们如下所示: 接下来,我们通过三个问题来深入了解下动态规划使用前缀.后缀和子串怎么去解决括号问 ...

  5. Colossal Fibonacci Numbers(巨大的斐波那契数)UVA 11582

    评测地址:http://acm.hust.edu.cn/vjudge/problem/41990 The i'th Fibonacci number f (i) is recursively de n ...

  6. hdu 1021 Fibonacci Again(变形的斐波那契)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1021 Fibonacci Again Time Limit: 2000/1000 MS (Java/Ot ...

  7. [LeetCode] Length of Longest Fibonacci Subsequence 最长的斐波那契序列长度

    A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 ...

  8. 【CF446C】DZY Loves Fibonacci Numbers (线段树 + 斐波那契数列)

    Description ​ 看题戳我 给你一个序列,要求支持区间加斐波那契数列和区间求和.\(~n \leq 3 \times 10 ^ 5, ~fib_1 = fib_2 = 1~\). Solut ...

  9. UVA - 11582 Colossal Fibonacci Numbers! (巨大的斐波那契数!)

    题意:输入两个非负整数a.b和正整数n(0<=a,b<264,1<=n<=1000),你的任务是计算f(ab)除以n的余数,f(0) = 0, f(1) = 1,且对于所有非负 ...

随机推荐

  1. Java第一课!

    public class Text { public static void main(String[] args) { int a=100; //赋值a=100 System.out.println ...

  2. 关于umi-request GET请求参数携带数组

    在使用umi-request时候发现GET传递数组,后台在接收时只能接受到最后一个,对此记录一下. 问题: // 发送数据: request(url, { params: { select: [1,2 ...

  3. 超简单的CDH6部署和体验(单机版)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  4. Python之集合详解

    定义: 1.不同元素组成 2.无序 3.集合中的元素必须是不可变类型 创建集合 s = {1,2,3,4,5,6,7,8} 1.定义可变集合 >>> set_test = set(' ...

  5. MySql中varchar和char,如何选择合适的数据类型?

    背景 学过MySQL的同学都知道MySQL中varchar和char是两种最主要的字符串类型,varchar是变长的类型,而char是固定长度.那关于如何选择类型就成为令人头疼的事,很多初学者为了保证 ...

  6. django—csrf中间件校验流程

    CSRF(跨站请求伪造)是一种挟制用户在当前已登录的Web应用程序上执行非本意的操作的攻击方法. 这利用了web中用户身份验证的一个漏洞:简单的身份验证只能保证请求发自某个用户的浏览器,却不能保证请求 ...

  7. pybind11和numpy进行交互

    使用一个遵循buffer protocol的对象就可以和numpy交互了.   这个buffer_protocol要有哪些东西呢? 要有如下接口: struct buffer_info { void ...

  8. 给大家分享一下java数据库操作步骤

    获取驱动程序Jar文件,并放置到项目的类路径中: 注册驱动器类: 获取数据库连接: 获取Statement对象来执行相关SQL操作: 关闭各种资源;

  9. E. Enemy is weak 解析(思維、離散化、BIT、線段樹)

    Codeforce 61 E. Enemy is weak 解析(思維.離散化.BIT.線段樹) 今天我們來看看CF61E 題目連結 題目 給一個數列\(a\),求有多少\((i,j,k)\),\(i ...

  10. Flink1.9.2源码编译和使用

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...