pytorch resnet实现
官方github上已经有了pytorch基础模型的实现,链接
但是其中一些模型,尤其是resnet,都是用函数生成的各个层,自己看起来是真的难受!
所以自己按照caffe的样子,写一个pytorch的resnet18模型,当然和1000分类模型不同,模型做了一些修改,输入48*48的3通道图片,输出7类。
import torch.nn as nn
import torch.nn.functional as F class ResNet18Model(nn.Module):
def __init__(self):
super().__init__() self.bn64_0 = nn.BatchNorm2d(64)
self.bn64_1 = nn.BatchNorm2d(64)
self.bn64_2 = nn.BatchNorm2d(64)
self.bn64_3 = nn.BatchNorm2d(64)
self.bn64_4 = nn.BatchNorm2d(64) self.bn128_0 = nn.BatchNorm2d(128)
self.bn128_1 = nn.BatchNorm2d(128)
self.bn128_2 = nn.BatchNorm2d(128)
self.bn128_3 = nn.BatchNorm2d(128) self.bn256_0 = nn.BatchNorm2d(256)
self.bn256_1 = nn.BatchNorm2d(256)
self.bn256_2 = nn.BatchNorm2d(256)
self.bn256_3 = nn.BatchNorm2d(256) self.bn512_0 = nn.BatchNorm2d(512)
self.bn512_1 = nn.BatchNorm2d(512)
self.bn512_2 = nn.BatchNorm2d(512)
self.bn512_3 = nn.BatchNorm2d(512) self.shortcut_straight_0 = nn.Sequential()
self.shortcut_straight_1 = nn.Sequential()
self.shortcut_straight_2 = nn.Sequential()
self.shortcut_straight_3 = nn.Sequential()
self.shortcut_straight_4 = nn.Sequential() self.shortcut_conv_bn_64_128_0 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(128)) self.shortcut_conv_bn_128_256_0 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(256)) self.shortcut_conv_bn_256_512_0 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(512)) self.conv_w3_h3_in3_out64_s1_p1_0 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.conv_w3_h3_in64_out64_s1_p1_0 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.conv_w3_h3_in64_out64_s1_p1_1 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.conv_w3_h3_in64_out64_s1_p1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.conv_w3_h3_in64_out64_s1_p1_3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False) self.conv_w3_h3_in64_out128_s2_p1_0 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False) self.conv_w3_h3_in128_out128_s1_p1_0 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False)
self.conv_w3_h3_in128_out128_s1_p1_1 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False)
self.conv_w3_h3_in128_out128_s1_p1_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False) self.conv_w3_h3_in128_out256_s2_p1_0 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False) self.conv_w3_h3_in256_out256_s1_p1_0 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False)
self.conv_w3_h3_in256_out256_s1_p1_1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False)
self.conv_w3_h3_in256_out256_s1_p1_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False) self.conv_w3_h3_in256_out512_s2_p1_0 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False) self.conv_w3_h3_in512_out512_s1_p1_0 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False)
self.conv_w3_h3_in512_out512_s1_p1_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False)
self.conv_w3_h3_in512_out512_s1_p1_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.avg_pool_0 = nn.AdaptiveAvgPool2d((1, 1))
self.fc_512_7_0 = nn.Linear(512, 7)
self.dropout_0 = nn.Dropout(p=0.5) def forward(self, x): # 48*48*3
t = self.conv_w3_h3_in3_out64_s1_p1_0(x) #48*48*64
t = self.bn64_0(t)
y1 = F.relu(t) t = self.conv_w3_h3_in64_out64_s1_p1_0(y1) #48*48*64
t = self.bn64_1(t)
y2 = F.relu(t) t = self.conv_w3_h3_in64_out64_s1_p1_1(y2) #48*48*64
t = self.bn64_2(t)
t += self.shortcut_straight_0(y1)
y3 = F.relu(t) t = self.conv_w3_h3_in64_out64_s1_p1_2(y3) #48*48*64
t = self.bn64_3(t)
y4 = F.relu(t) t = self.conv_w3_h3_in64_out64_s1_p1_3(y4) #48*48*64
t = self.bn64_4(t)
t += self.shortcut_straight_1(y3)
y5 = F.relu(t) t = self.conv_w3_h3_in64_out128_s2_p1_0(y5) #24*24*128
t = self.bn128_0(t)
y6 = F.relu(t) t = self.conv_w3_h3_in128_out128_s1_p1_0(y6) #24*24*128
t = self.bn128_1(t)
t += self.shortcut_conv_bn_64_128_0(y5)
y7 = F.relu(t) t = self.conv_w3_h3_in128_out128_s1_p1_1(y7) #24*24*128
t = self.bn128_2(t)
y8 = F.relu(t) t = self.conv_w3_h3_in128_out128_s1_p1_2(y8) #24*24*128
t = self.bn128_3(t)
t += self.shortcut_straight_2(y7)
y9 = F.relu(t) t = self.conv_w3_h3_in128_out256_s2_p1_0(y9) #12*12*256
t = self.bn256_0(t)
y10 = F.relu(t) t = self.conv_w3_h3_in256_out256_s1_p1_0(y10) #12*12*256
t = self.bn256_1(t)
t += self.shortcut_conv_bn_128_256_0(y9)
y11 = F.relu(t) t = self.conv_w3_h3_in256_out256_s1_p1_1(y11) #12*12*256
t = self.bn256_2(t)
y12 = F.relu(t) t = self.conv_w3_h3_in256_out256_s1_p1_2(y12) #12*12*256
t = self.bn256_3(t)
t += self.shortcut_straight_3(y11)
y13 = F.relu(t) t = self.conv_w3_h3_in256_out512_s2_p1_0(y13) #6*6*512
t = self.bn512_0(t)
y14 = F.relu(t) t = self.conv_w3_h3_in512_out512_s1_p1_0(y14) #6*6*512
t = self.bn512_1(t)
t += self.shortcut_conv_bn_256_512_0(y13)
y15 = F.relu(t) t = self.conv_w3_h3_in512_out512_s1_p1_1(y15) #6*6*512
t = self.bn512_2(t)
y16 = F.relu(t) t = self.conv_w3_h3_in512_out512_s1_p1_2(y16) #6*6*512
t = self.bn512_3(t)
t += self.shortcut_straight_4(y15)
y17 = F.relu(t) out = self.avg_pool_0(y17) #1*1*512
out = out.view(out.size(0), -1)
out = self.dropout_0(out)
out = self.fc_512_7_0(out) return out if __name__ == '__main__':
net = ResNet18Model()
# print(net) import torch
net_in = torch.rand(1, 3, 48, 48)
net_out = net(net_in)
print(net_out)
print(net_out.size())
pytorch resnet实现的更多相关文章
- PyTorch ResNet 使用与源码解析
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson8/resnet_inference.py 这篇文章首先会简 ...
- [源码解读] ResNet源码解读(pytorch)
自己看读完pytorch封装的源码后,自己又重新写了一边(模仿其书写格式), 一些问题在代码中说明. import torch import torchvision import argparse i ...
- 解读 pytorch对resnet的官方实现
地址:https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py 贴代码 import torch.nn as ...
- 【深度学习】基于Pytorch的ResNet实现
目录 1. ResNet理论 2. pytorch实现 2.1 基础卷积 2.2 模块 2.3 使用ResNet模块进行迁移学习 1. ResNet理论 论文:https://arxiv.org/pd ...
- ResNet网络的Pytorch实现
1.文章原文地址 Deep Residual Learning for Image Recognition 2.文章摘要 神经网络的层次越深越难训练.我们提出了一个残差学习框架来简化网络的训练,这些 ...
- Pytorch构建ResNet
学了几天Pytorch,大致明白代码在干什么了,贴一下.. import torch from torch.utils.data import DataLoader from torchvision ...
- 陈云pytorch学习笔记_用50行代码搭建ResNet
import torch as t import torch.nn as nn import torch.nn.functional as F from torchvision import mode ...
- PyTorch对ResNet网络的实现解析
PyTorch对ResNet网络的实现解析 1.首先导入需要使用的包 import torch.nn as nn import torch.utils.model_zoo as model_zoo # ...
- 【pytorch】改造resnet为全卷积神经网络以适应不同大小的输入
为什么resnet的输入是一定的? 因为resnet最后有一个全连接层.正是因为这个全连接层导致了输入的图像的大小必须是固定的. 输入为固定的大小有什么局限性? 原始的resnet在imagenet数 ...
随机推荐
- Vue技术点整理-指令
我们通常给一个元素添加 v-if / v-show 来做权限管理,但如果判断条件繁琐且多个地方需要判断,这种方式的代码不仅不优雅而且冗余. 针对这种情况,我们可以通过全局自定义指令来处理:我们先在新建 ...
- linux shell判断文件,目录是否存在或者具有权限
在linux中判断文件,目录是否存在或则具有的权限,根据最近的学习以及网上的资料,进行了以下的总结: #!/bin/sh myPath="/var/log/httpd/" myFi ...
- (25)Vim 1
1.安装Vim CentOS 系统中,使用如下命令即可安装 Vim: yum install vim 需要注意的是,此命令运行时,有时需要手动确认 [y/n] 遇到此情况,选择 "y&quo ...
- cassandra权威指南读书笔记--性能调优
cassandra自带测试工具cassandra-stress.nodetool proxyhistograms可以在多个节点运行,发现最慢的协调节点.nodetool tablehistograms ...
- Hyperbase常用SQL
1.创建表 1.1 建HBase内表 CREATE TABLE hbase_inner_table( key1 string, bi bigint, dc decimal(10,2), ...
- 2019 Multi-University Training Contest 1 Path(最短路+最小割)
题意:给你n个点 m条边 现在你能够堵住一些路 问怎样能让花费最少且让1~n走的路比最短路的长度要长 思路:先跑一边最短路 建一个最短路图 然后我们跑一边最大流求一下最小割即可 #include &l ...
- hdu5497 Inversion
Problem Description You have a sequence {a1,a2,...,an} and you can delete a contiguous subsequence o ...
- Codeforces Round #481 (Div. 3) C. Letters (模拟,二分)
题意:有个\(n\)个公寓,每个公寓\(a_{i}\)代表着编号为\(1-a_{i}\)个房间,给你房间号,问它在第几栋公寓的第几个房间. 题解:对每个公寓的房间号记一个前缀和,二分查找属于第几个公寓 ...
- C#(winform)button去掉各种边框
仔细读完,主要在FlatAppearance属性里 1.既然是添加背景图片 所以这里应该使用 Button.BackgroudImage = "" ;来设置图片 而不应该使用 B ...
- rabbitmq学习二
rabbitmq的六种工作模式: 这里简单介绍下六种工作模式的主要特点: 简单模式:一个生产者,一个消费者 work模式:一个生产者,多个消费者,每个消费者获取到的消息唯一. 订阅模式:一个生产者发送 ...