Spark 单机环境配置
概要
大数据和人工智能已经宣传了好多年, Hadoop 和 Spark 也已经发布了很长时间, 一直想试试, 但是工作也遇不到使用的场景, 就一直拖着. 这次在极客时间上选了蔡元楠老师的《大规模数据处理实战》的课. 其中介绍了很多 Spark 的内容, 就此机会, 也在虚拟机中配置了 Spark 的单机环境.
一方面, 熟悉熟悉 Spark 的用法; 另一方面, 虽然还没有接触到大数据分析的场景, 但是即使是了解了解 Spark 中处理大数据的机制, API 的设计, 也可以开拓平时编程的思路.
Spark 单机环境配置
我是 Debian10 上配置的.
JDK 环境配置
JDK 使用的是 Oracle 的标准 JDK1.8 版本, 国内从 Oracle 官网上下载 JDK 非常慢, 推荐使用华为的 mirror: https://mirrors.huaweicloud.com/java/jdk/8u202-b08/jdk-8u202-linux-x64.tar.gz
下载后, 我是将其解压到 /usr/local 文件夹
$ wget https://mirrors.huaweicloud.com/java/jdk/8u202-b08/jdk-8u202-linux-x64.tar.gz
$ sudo tar zxvf jdk-8u202-linux-x64.tar.gz -C /usr/local
然后配置环境变量, 如果是 bash, 则配置 ~/.bashrc; 如果是 zsh, 则配置 ~/.zshenv
# java
export JAVA_HOME=/usr/local/jdk1.8
export PATH=$PATH:$JAVA_HOME/bin
配置好之后, 通过如下命令检查是否安装配置成功:
$ java -version
java version "1.8.0_202"
Java(TM) SE Runtime Environment (build 1.8.0_202-b08)
Java HotSpot(TM) 64-Bit Server VM (build 25.202-b08, mixed mode)
Spark 环境配置
Spark 安装也非常简单, 从官网上下载最新的 packagea, 我下载的最新版本如下:
$ wget http://mirror.bit.edu.cn/apache/spark/spark-3.0.0-preview2/spark-3.0.0-preview2-bin-hadoop2.7.tgz
$ sudo tar zxvf spark-3.0.0-preview2-bin-hadoop2.7.tgz -C /usr/local
下载后同样, 也解压到 /usr/local 文件夹
Spark 也需要配置相应的环境变量: (同配置 JDK 一样, 根据你使用的是 bash 还是 zsh, 配置环境变量到不同的文件中)
# spark
export SPARK_HOME=/usr/local/spark
export PATH=$PATH:$SPARK_HOME/bin
配置完成后, 在命令行输入如下命令看看是否能成功运行:
$ pyspark
Python 2.7.16 (default, Oct 10 2019, 22:02:15)
[GCC 8.3.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.
20/03/02 15:21:23 WARN Utils: Your hostname, debian-wyb resolves to a loopback address: 127.0.1.1; using 10.0.2.15 instead (on interface enp0s3)
20/03/02 15:21:23 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
20/03/02 15:21:23 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
/usr/local/spark/python/pyspark/context.py:219: DeprecationWarning: Support for Python 2 and Python 3 prior to version 3.6 is deprecated as of Spark 3.0. See also the plan for dropping Python 2 support at https://spark.apache.org/news/plan-for-dropping-python-2-support.html.
DeprecationWarning)
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/\_,_/_/ /_/\_\ version 3.0.0-preview2
/_/
Using Python version 2.7.16 (default, Oct 10 2019 22:02:15)
SparkSession available as 'spark'.
注 这里的 pyspark 使用的 2.x 版本的 python, 后续我们配置了 python 环境之后, 会在 python3 下开发
python 环境配置
Debian10 系统中自带了 python2 和 python3 的环境, 为了不影响现有系统的默认环境, 我们安装 virtualenv 来使用 spark
首先, 安装 virtualenv, 并生成一个独立的 python3 环境
$ pip3 install virtualenv
$ virtualenv py3-vm
启动 py3-vm, 并在其中安装 pyspark, 开发 spark 的示例
$ source ./py3-vm/bin/activate
$ pip install pyspark
$ pip install findspark
退出上面的 py3-vm, 使用如下命令:
$ deactive
Spark 使用示例
上述环境都配置之后, 下面用一个简单的例子来尝试 spark 的 API 强大之处. 我们构造一个订单统计的例子:
- 数据源: csv 格式的订单文件, 每行 3 个信息, 订单号(不重复), 店铺名称, 订单金额
- 订单数统计: 按照店铺统计订单数
- 订单金额统计: 按照店铺统计订单金额
示例代码 (order_stat.py)
1 import findspark
2
3 findspark.init()
4
5 if __name__ == "__main__":
6 from pyspark.sql import SparkSession
7 from pyspark.sql.functions import *
8
9 spark = SparkSession\
10 .builder\
11 .appName('order stat')\
12 .getOrCreate()
13
14 lines = spark.read.csv("./orders.csv",
15 sep=",",
16 schema="order INT, shop STRING, price DOUBLE")
17
18 # 统计各个店铺的订单数
19 orderCounts = lines.groupBy('shop').count()
20 orderCounts.show()
21
22 # 统计各个店铺的订单金额
23 shopPrices = lines.groupBy('shop').sum('price')
24 shopPrices.show()
25
26 spark.stop()
测试用的 csv 文件内容 (orders.csv)
1,京东,10.0
2,京东,20.0
3,天猫,21.0
4,京东,22.0
5,天猫,11.0
6,京东,22.0
7,天猫,23.0
8,天猫,24.0
9,天猫,40.0
10,天猫,70.0
11,天猫,10.0
12,天猫,20.0
运行结果
$ python order_stat.py
20/03/02 17:40:50 WARN Utils: Your hostname, debian-wyb resolves to a loopback address: 127.0.1.1; using 10.0.2.15 instead (on interface enp0s3)
20/03/02 17:40:50 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
20/03/02 17:40:50 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
+----|-----+
|shop|count|
+----|-----+
|京东| 4|
|天猫| 8|
+----|-----+
+----|----------+
|shop|sum(price)|
+----|----------+
|京东| 74.0|
|天猫| 219.0|
+----|----------+
Spark 单机环境配置的更多相关文章
- Windows下Spark单机环境配置
1. 环境配置 a) java环境配置: JDK版本为1.7,64位: 环境变量配置如下: JAVA_HOME为JDK安装路径,例如D:\software\workSoftware\JAVA 在pa ...
- mac下spark单机环境配置笔记
1.安装scala 从http://www.scala-lang.org下载scala-2.11.7.tgz并解压缩 将解压缩的文件夹用mv指令移动到/usr/local/share mv [scal ...
- windows7 spark单机环境搭建及pycharm访问spark
windows7 spark单机环境搭建 follow this link how to run apache spark on windows7 pycharm 访问本机 spark 安装py4j ...
- windows下spark开发环境配置
http://www.cnblogs.com/davidwang456/p/5032766.html windows下spark开发环境配置 --本篇随笔由同事葛同学提供. windows下spark ...
- spark笔记 环境配置
spark笔记 spark简介 saprk 有六个核心组件: SparkCore.SparkSQL.SparkStreaming.StructedStreaming.MLlib,Graphx Spar ...
- solr单机环境配置并包含外部单机zookeeper
首先和之前一样下载solr-5.3.1.tgz,然后执行下面命令释放文件并放置在/usr/目录下: $ .tgz $ /usr/ $ cd /usr/solr- 这个时候先不用启动solr,因为单机模 ...
- spark开发环境配置
以后spark,mapreduce,mpi可能三者集于同一平台,各自的侧重点有所不用,相当于云计算与高性能计算的集合,互补,把spark的基础看了看,现在把开发环境看看,主要是看源码,最近Apache ...
- Hadoop/Spark开发环境配置
修改hostname bogon 为localhost 查看ip地址 [training@bogon ~]$ sudo hostname localhost [training@bogon ~]$ h ...
- hadoop单机环境配置
1.配置一台linux服务器(当前使用CentOS7)及一些基本设置 1.1在wmware下制作一台centos服务器(桥接模式) 并设置静态ip (编辑/etc/sysmconfig ...
随机推荐
- Activiti工作流概述
本来打算看OCR的但是我手里有的资源是讲的PY的,涉及到CNN和RNN看得有的不太明白,捂脸,所以看看工作流吧,反正也都不会,干啥啥不会 工作流的概念 工作流的概念应该都差不多了解要不也不会搜索这个标 ...
- EasyCode插件使用及模板参考
EasyCode插件使用及模板参考 1.介绍安装 Easycode是idea的一个插件,可以直接对数据的表生成entity.controller.service.dao.mapper无需任何编码,简单 ...
- 关于java基础_方法的简单习题
package day05; import java.util.Arrays; /** * 方法作业 * @author ASUS * */ public class Demo6 { /* * 1.定 ...
- Docker多主机管理(八)
docker多主机管理 前面我们的实验环境中只有一个 docker host,所有的容器都是运行在这一个 host 上的.但在真正的环境中会有多个 host,容器在这些 host 中启动.运行.停止和 ...
- CSS常用布局技巧 实例
末尾用省略号! white-space: nowrap; overflow: hidden; text-overflow: ellipsis; ######################## 两个i ...
- matlab数字图像处理-冈萨雷斯-数据类和图像类之间的转换
亮度图像 二值图像 属于注释 数据类间的转换 图像类和类型间的转化 把一个double类的任意数组转换成[0,1]的归一化double类数组----->mat2gray 图像类和类型间的转化例题 ...
- 性能之qps,并发数,相应时间
QPS:每秒处理的请求数.QPS = 并发数/请求平均处理时间. 请求响应时间=请求等待时间+网络时间+请求处理时间.假设请求处理时间不受影响,持续不变,实际请求数大于QPS,会影响请求响应时间,大量 ...
- 虚拟机Ubuntu(18.04.2)下安装配置Hadoop(2.9.2)(伪分布式+Java8)
[本文结构] [1]安装Hadoop前的准备工作 [1.1] 创建新用户 [1.2] 更新APT [1.3] 安装SSH [1.4] 安装Java环境 [2]安装和配置hadoop [2.1] Had ...
- Spring Boot 知识清单(一)SpringApplication
爱生活,爱编码,微信搜一搜[架构技术专栏]关注这个喜欢分享的地方.本文 架构技术专栏 已收录,有各种JVM.多线程.源码视频.资料以及技术文章等你来拿. 一.概述 目前Spring Boot已经发展到 ...
- 刷题[安洵杯 2019]easy_web
前置知识 md5碰撞: %4d%c9%68%ff%0e%e3%5c%20%95%72%d4%77%7b%72%15%87%d3%6f%a7%b2%1b%dc%56%b7%4a%3d%c0%78%3e% ...