BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)
Description
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了。
Input
第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,000。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。
Output
输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。
Sample Input
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1
Sample Output
Solution
1.不同的最小生成树中,每种权值的边出现的个数是确定的。
2.不同的生成树中,某一种权值的边连接完成后,形成的联通块状态是一样的 。
也就是说可以对于权值相同的那些边分别处理,爆搜出所有可能的连边情况,然后乘法原理计数即可。
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#define N (1009)
#define MOD (31011)
using namespace std; struct Edge
{
int x,y,v;
bool operator < (const Edge &a) const{return v<a.v;}
}E[N];
struct Node{int l,r;}a[N];
int n,m,k,fa[N],size[N],cnt,ans=,sum; int Find(int x){return x==fa[x]?x:Find(fa[x]);} void Dfs(int l,int r,int d,int v)
{
if (l>r)
{
if (d==size[v]) sum=(sum+)%MOD;
return;
}
if (r-l++d<size[v]) return;
int fx=Find(E[l].x), fy=Find(E[l].y);
if (fx!=fy && d<size[v])
{
fa[fx]=fy;
Dfs(l+,r,d+,v);
fa[fx]=fx;
}
Dfs(l+,r,d,v);
} int main()
{
scanf("%d%d",&n,&m);
for (int i=; i<=m; ++i)
scanf("%d%d%d",&E[i].x,&E[i].y,&E[i].v);
sort(E+,E+m+);
for (int i=; i<=n; ++i) fa[i]=i;
for (int i=; i<=m; ++i)
{
if (E[i].v!=E[i-].v) a[++k].l=i, a[k-].r=i-;
int fx=Find(E[i].x), fy=Find(E[i].y);
if (fx!=fy) fa[fx]=fy,cnt++,size[k]++;
}
a[k].r=m;
if (cnt!=n-){puts(""); return ;} for (int i=; i<=n; ++i) fa[i]=i;
for (int i=; i<=k; ++i)
{
if (!size[i]) continue;
sum=;
Dfs(a[i].l,a[i].r,,i);
ans=sum*ans%MOD;
for(int j=a[i].l;j<=a[i].r;j++)
{
int fx=Find(E[j].x), fy=Find(E[j].y);
if(fx!=fy) fa[fx]=fy;
}
}
printf("%d\n",ans);
}
BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)的更多相关文章
- bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)
1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等 就是说如果一种方案中权值为1的边有n条 ...
- 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...
- BZOJ_1016_[JSOI2008]_最小生成树计数_(dfs+乘法原理)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1016 给出一张图,其中具有相同权值的边的数目不超过10,求最小生成树的个数. 分析 生成树的计 ...
- BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )
不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...
- [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】
题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...
- [BZOJ1016][JSOI2008]最小生成树计数 最小生成树 搜索
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 做这道题之前需要知道一些结论,同一个图的最小生成树中相同权值的边的个数是不会变的,如 ...
- bzoj 1016: [JSOI2008]最小生成树计数【dfs+克鲁斯卡尔】
有一个性质就是组成最小生成树总边权值的若干边权总是相等的 这意味着按边权排序后在权值相同的一段区间内的边能被选入最小生成树的条数是固定的 所以先随便求一个最小生成树,把每段的入选边数记录下来 然后对于 ...
- 【BZOJ1016】【Luogu P4208】 [JSOI2008]最小生成树计数 最小生成树,矩阵树定理
蛮不错的一道题,遗憾就遗憾在数据范围会导致暴力轻松跑过. 最小生成树的两个性质: 不同的最小生成树,相同权值使用的边数一定相同. 不同的最小生成树,将其都去掉同一个权值的所有边,其连通性一致. 这样我 ...
- $bzoj1016-JSOI2008$ 最小生成树计数 最小生成树 $dfs/matrix-tree$定理
题面描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的 ...
随机推荐
- 如何在没有https环境下使用webrtc
新版本的webrtc使用需要Https,但是在内网开发调试时,要配置Https环境比较麻烦,下面的方法是教你如何在http下使用webrtc 1,点桌面上的Chrome图票,右键->属性,把目票 ...
- golang产生guid
labix.org/v2/mgo/bson 包虽然是MongoDB的golang实现,其中产生唯一ID的算法是独立的,不依赖MongoDB, 提炼这部分的代码如下: package main im ...
- fuzhou 1692 Key problem ***
Problem 1692 Key problem Accept: 103 Submit: 553 Time Limit: 1000 mSec Memory Limit : 32768 KB ...
- SJ定理——省选前的学习2
——博弈论?上SG定理!什么?不行?那就SJ定理吧. 原来还有这么个玩意... bzoj1022. 大意是Nim取石子游戏中取到最后一个石子就算输,即无法取了就获胜(原版是无法取了就输). 我们试图套 ...
- vue项目使用vue-i18n和iView切换多语言
效果图: 当然,如果使用iview组件,组件也会对应切换语言. 这里,假设已经用vue-cli脚手架创建了项目,熟悉vue-router,而且已经引入了iview UI. 第一步: 我们在main.j ...
- JS算法之八皇后问题(回溯法)
八皇后这个经典的算法网上有很多种思路,我学习了之后自己实现了一下,现在大概说说我的思路给大家参考一下,也算记录一下,以免以后自己忘了要重新想一遍. 八皇后问题 八皇后问题,是一个古老而著名的问题,是回 ...
- mybatis大框架
MyBatis 开源的数据持久化层框架 实体类与SQL语句之间建立映射关系 一:MyBatis前身是IBatis,本是Apache的一个开源的项目, 基于SQL语法,简单易学 ,是耦合度降低,方便 ...
- 自定义Windows Form无法拖动,简单解决方案。
我也不知道为什么要自定义一个没差的WinForm,反正就是遇到了MyForm无法用鼠标拖着走的问题,百度到的解决方案,记录一下:再把 [DllImport("user32.dll" ...
- docker pull提示x509错误的对应方法
在一台虚拟机上使用docker pull时出现了x509错误,相关原因与对应方法简单memo如下. 错误现象 在使用docker pull从dockerhub上下载镜像时提示如下错误 docker: ...
- Hbase集群部署
1.安装Hadoop集群 这个之前已经写过 2.安装Zookeeper 这个之前也已经写过 3.下载hbase,放到master机器,解压 4.修改hbase-env.sh,添加Java地址 expo ...