Description

  现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了。

Input

  第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,000。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。

Output

  输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。

Sample Input

4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1

Sample Output

8

Solution

有两条定理:

1.不同的最小生成树中,每种权值的边出现的个数是确定的。

2.不同的生成树中,某一种权值的边连接完成后,形成的联通块状态是一样的 。

也就是说可以对于权值相同的那些边分别处理,爆搜出所有可能的连边情况,然后乘法原理计数即可。

Code

 #include<iostream>
#include<cstdio>
#include<algorithm>
#define N (1009)
#define MOD (31011)
using namespace std; struct Edge
{
int x,y,v;
bool operator < (const Edge &a) const{return v<a.v;}
}E[N];
struct Node{int l,r;}a[N];
int n,m,k,fa[N],size[N],cnt,ans=,sum; int Find(int x){return x==fa[x]?x:Find(fa[x]);} void Dfs(int l,int r,int d,int v)
{
if (l>r)
{
if (d==size[v]) sum=(sum+)%MOD;
return;
}
if (r-l++d<size[v]) return;
int fx=Find(E[l].x), fy=Find(E[l].y);
if (fx!=fy && d<size[v])
{
fa[fx]=fy;
Dfs(l+,r,d+,v);
fa[fx]=fx;
}
Dfs(l+,r,d,v);
} int main()
{
scanf("%d%d",&n,&m);
for (int i=; i<=m; ++i)
scanf("%d%d%d",&E[i].x,&E[i].y,&E[i].v);
sort(E+,E+m+);
for (int i=; i<=n; ++i) fa[i]=i;
for (int i=; i<=m; ++i)
{
if (E[i].v!=E[i-].v) a[++k].l=i, a[k-].r=i-;
int fx=Find(E[i].x), fy=Find(E[i].y);
if (fx!=fy) fa[fx]=fy,cnt++,size[k]++;
}
a[k].r=m;
if (cnt!=n-){puts(""); return ;} for (int i=; i<=n; ++i) fa[i]=i;
for (int i=; i<=k; ++i)
{
if (!size[i]) continue;
sum=;
Dfs(a[i].l,a[i].r,,i);
ans=sum*ans%MOD;
for(int j=a[i].l;j<=a[i].r;j++)
{
int fx=Find(E[j].x), fy=Find(E[j].y);
if(fx!=fy) fa[fx]=fy;
}
}
printf("%d\n",ans);
}

BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)的更多相关文章

  1. bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

    1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等  就是说如果一种方案中权值为1的边有n条 ...

  2. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  3. BZOJ_1016_[JSOI2008]_最小生成树计数_(dfs+乘法原理)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1016 给出一张图,其中具有相同权值的边的数目不超过10,求最小生成树的个数. 分析 生成树的计 ...

  4. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  5. [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】

    题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...

  6. [BZOJ1016][JSOI2008]最小生成树计数 最小生成树 搜索

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 做这道题之前需要知道一些结论,同一个图的最小生成树中相同权值的边的个数是不会变的,如 ...

  7. bzoj 1016: [JSOI2008]最小生成树计数【dfs+克鲁斯卡尔】

    有一个性质就是组成最小生成树总边权值的若干边权总是相等的 这意味着按边权排序后在权值相同的一段区间内的边能被选入最小生成树的条数是固定的 所以先随便求一个最小生成树,把每段的入选边数记录下来 然后对于 ...

  8. 【BZOJ1016】【Luogu P4208】 [JSOI2008]最小生成树计数 最小生成树,矩阵树定理

    蛮不错的一道题,遗憾就遗憾在数据范围会导致暴力轻松跑过. 最小生成树的两个性质: 不同的最小生成树,相同权值使用的边数一定相同. 不同的最小生成树,将其都去掉同一个权值的所有边,其连通性一致. 这样我 ...

  9. $bzoj1016-JSOI2008$ 最小生成树计数 最小生成树 $dfs/matrix-tree$定理

    题面描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的 ...

随机推荐

  1. J2EE的体系架构

    J2EE是Java2平台企业版(Java 2 Platform,Enterprise Edition),它的核心是一组技术规范与指南,提供基于组件的方式来设计.开发.组装和部署企业应用.J2EE使用多 ...

  2. 在Asp.Net Core中取得物理路径

    在Asp.Net Core中取得物理路径: 从ASP.NET Core RC2开始,可以通过注入 IHostingEnvironment 服务对象来取得Web根目录和内容根目录的物理路径,如下所示: ...

  3. 以太坊-windows-私有链-搭建(非源码)

    初 接触以太坊,只安装,不讲道理: 1.win10系统,64位 2.以太坊钱包 3.以太坊geth客户端 geth 和 钱包可以到ethfans.org的资料库里下载,那里提供国内镜像和官网地址. 钱 ...

  4. Springboot简介01

    前言: spring是近几年java中最具有代表而且最为流行的框架,spring是基于aop和IOC的思想,在我们的项目中充当了一个粘合剂的作用,既可以成为对象工厂,来管理我们的controller. ...

  5. Java基础——String

    前言 从去年八月末开始工作一年了,有了大半年的java开发经验,自认为比在大学时期编码能力强了很多,但是基础方面概念模糊的地方感觉越来越多了 (:´д`)ゞ 所以,我准备把这些问题以及工作中遇到的问题 ...

  6. HBase—列族数据库的术语

    1. 列族数据库的基本组件 键空间,行键,列,列族 2. 什么是键空间 keyspace? 键空间 keyspace 是列族数据库的顶级数据结构,它在逻辑上能够容纳列族,行键以及与之相关的其他数据结构 ...

  7. java ThreadLocal(应用场景及使用方式及原理)

    尽管ThreadLocal与并发问题相关,可是很多程序猿只将它作为一种用于"方便传參"的工具,胖哥觉得这或许并非ThreadLocal设计的目的,它本身是为线程安全和某些特定场景的 ...

  8. jq中的isArray方法分析,如何判断对象是否是数组

    <!DOCTYPE html> <html> <head> <title>jq中的isArray方法分析</title> <meta ...

  9. MySQL5.5登陆

    通过cmd登陆 mysql -h localhost -P 3306 -u root -p123456 h后面跟的是域名或IP地址:大写的P后面跟的是端口号:u后面跟的是用户名:小写的p后面跟的是密码 ...

  10. JS判断客户端是手机还是PC的2个代码

    搬了下砖 function IsPC() { var userAgentInfo = navigator.userAgent; var Agents = ["Android", & ...