CF 1025 D. Recovering BST
D. Recovering BST
http://codeforces.com/contest/1025/problem/D
题意:
给出一个连续上升的序列a,两个点之间有边满足gcd(ai ,aj) != 1。选择一些边,问是否能构成一棵有n个点的二叉搜索树。
分析:
区间dp。
每个子树都是一段连续的区间,L[i][j]表示j为根,i~j-1这个区间的点能否使j的左子树,R[i][j]:i为根,i+1~j这个区间能否为i的右子树。
枚举一个中间点作为根,转移即可。
为什么这样转移:直接f[i][j]表示区间i~j能否构成一个树的话,还要去枚举根,或者记录根。就变成了f[i][j][k]表示区间i~j,根为k能否成为一棵树。这样复杂度就太大了。换一种记录根的方式,只记录左边和右边,两边是互不影响的,前面的状态拆成了两个,现在就不需要枚举根了。
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<vector>
#include<queue>
#include<map>
#define fi(s) freopen(s,"r",stdin);
#define fo(s) freopen(s,"w",stdout);
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ; LL a[N];
bool L[N][N], R[N][N], e[N][N]; LL gcd(LL a,LL b) {
return b == ? a : gcd(b, a % b);
} int main() { int n = read();
for (int i = ; i <= n; ++i) {
a[i] = read();
L[i][i] = R[i][i] = ;
}
for (int i = ; i <= n; ++i)
for (int j = i + ; j <= n; ++j)
if (gcd(a[i], a[j]) > ) e[i][j] = e[j][i] = ; for (int k = ; k <= n; ++k) {
for (int i = , j; (j = i + k - ) <= n; ++i) {
for (int mid = i; mid <= j; ++mid) {
if (L[i][mid] && R[mid][j])
R[i - ][j] |= e[i - ][mid], L[i][j + ] |= e[mid][j + ];
}
}
} for (int i = ; i <= n; ++i) {
if (L[][i] && R[i][n]) {
puts("Yes"); return ;
}
}
puts("No");
return ;
}
CF 1025 D. Recovering BST的更多相关文章
- Codeforces 1025 D - Recovering BST
D - Recovering BST 思路:区间dp dp[l][r][0]表示l到r之间的数字可以构成一个二叉搜索树,并且以r+1为根节点 dp[l][r][0]表示l到r之间的数字可以构成一个二叉 ...
- Solution -「CF 1025D」Recovering BST
\(\mathcal{Description}\) Link. 给定序列 \(\{a_n\}\),问是否存在一棵二叉搜索树,使得其中序遍历为 \(\{a_n\}\),且相邻接的两点不互素. ...
- CF D. Recovering BST (区间DP)
题意:给你n个节点,每个节点有一个权值,两个点可以连边当且仅当这两个点的gcd>1,问你这n个点能否构成一个二叉搜索树(每个节点最多有两个儿子,且左儿子小于右儿子),输入为递增顺序. 分析: 若 ...
- CF1025D Recovering BST
题意:给定序列,问能否将其构成一颗BST,使得所有gcd(x, fa[x]) > 1 解:看起来是区间DP但是普通的f[l][r]表示不了根,f[l][r][root]又是n4的会超时,怎么办? ...
- D. Recovering BST Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final)
http://codeforces.com/contest/1025/problem/D 树 dp 优化 f[x][y][0]=f[x][z][1] & f[z+1][y][0] ( gcd( ...
- Codeforces Round #505 D. Recovering BST(区间DP)
首先膜一发网上的题解.大佬们tql. 给你n个单调递增的数字,问是否能够把这些数字重新构成一棵二叉搜索树(BST),且所有的父亲结点和叶子结点之间的gcd > 1? 这个题场上是想暴力试试的.结 ...
- Recovering BST CodeForces - 1025D (区间dp, gcd)
大意: 给定$n$个数, 任意两个$gcd>1$的数间可以连边, 求是否能构造一棵BST. 数据范围比较大, 刚开始写的$O(n^3\omega(1e9))$竟然T了..优化到$O(n^3)$才 ...
- 「CF1025D Recovering BST」
题目 郑州讲过的题了 发现这是一个二叉搜索树,给出的还是中序遍历,我们很自然的想到我们需要可以用一个\(f[i][j][k](k\in[i,j])\)来表示区间\([i,j]\)能不能形成以\(k\) ...
- CodeForces - 1025D: Recovering BST (区间DP)
Dima the hamster enjoys nibbling different things: cages, sticks, bad problemsetters and even trees! ...
随机推荐
- window用ssh连接本机虚拟机中的ubuntu
@window用ssh连接本机虚拟机中的ubuntu 主机和虚拟机间通信,需将2台机器的IP地址设为同一网段. 1.设置虚拟机: 虚拟机–> 设置–> Hardware –> Net ...
- How Flask Routing Works
@How Flask Routing Works The entire idea of Flask (and the underlying Werkzeug library) is to map UR ...
- 消息中间件--"rocketmq"02之QuickStart
依赖 <dependency> <groupId>com.alibaba.rocketmq</groupId> <artifactId>rocketmq ...
- UVa 10900 - So you want to be a 2n-aire?(期望DP)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- Java50道经典习题-程序13 根据条件求数字
题目:一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少?分析:完全平方数:如果一个数能是由两个相同的数相乘的结果,那么这个数就是完全平方数,例如:9==3*3: ...
- 使用iframe标签隐藏CSRF代码
index.html <iframe src="1.html" width="0" height="0"></iframe ...
- 【题解】洛谷P1073 [NOIP2009TG] 最优贸易(SPFA+分层图)
次元传送门:洛谷P1073 思路 一开始看题目嗅出了强连通分量的气息 但是嫌长没打 听机房做过的dalao说可以用分层图 从来没用过 就参考题解了解一下 因为每个城市可以走好几次 所以说我们可以在图上 ...
- JDBC——释放资源的代码
public static void release(ResultSet rs, Statement statement, Connection conn) { if (rs != null) { t ...
- python里的默认参数
def extendList(val, test=[]): test.append(val) return test list1 = extendList(10) list2 = extendList ...
- Python中级 —— 05访问数据库
** 写在前面 ------------------> ** 廖雪峰 菜鸟 数据库类别 首先选择一个关系数据库.目前广泛使用的关系数据库也就这么几种: 付费的商用数据库: Oracle:典型的高 ...