B. Weakened Common Divisor

time limit per test

1.5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

During the research on properties of the greatest common divisor (GCD) of a set of numbers, Ildar, a famous mathematician, introduced a brand new concept of the weakened common divisor (WCD) of a list of pairs of integers.

For a given list of pairs of integers (a1,b1)(a1,b1), (a2,b2)(a2,b2), ..., (an,bn)(an,bn) their WCD is arbitrary integer greater than 11, such that it divides at least one element in each pair. WCD may not exist for some lists.

For example, if the list looks like [(12,15),(25,18),(10,24)][(12,15),(25,18),(10,24)], then their WCD can be equal to 22, 33, 55 or 66 (each of these numbers is strictly greater than 11 and divides at least one number in each pair).

You're currently pursuing your PhD degree under Ildar's mentorship, and that's why this problem was delegated to you. Your task is to calculate WCD efficiently.

Input

The first line contains a single integer nn (1≤n≤1500001≤n≤150000) — the number of pairs.

Each of the next nn lines contains two integer values aiai, bibi (2≤ai,bi≤2⋅1092≤ai,bi≤2⋅109).

Output

Print a single integer — the WCD of the set of pairs.

If there are multiple possible answers, output any; if there is no answer, print −1−1.

Examples

input

Copy

3
17 18
15 24
12 15

output

Copy

6

input

Copy

2
10 16
7 17

output

Copy

-1

input

Copy

5
90 108
45 105
75 40
165 175
33 30

output

Copy

5

Note

In the first example the answer is 66 since it divides 1818 from the first pair, 2424 from the second and 1212 from the third ones. Note that other valid answers will also be accepted.

In the second example there are no integers greater than 11 satisfying the conditions.

In the third example one of the possible answers is 55. Note that, for example, 1515 is also allowed, but it's not necessary to maximize the output.

枚举一下第一对数的因子用set存下

注意用素数筛来做不然会超时

也要注意n=1的情况

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std; typedef long long LL;
int n;
const int maxn = 150005;
LL a[maxn], b[maxn];
set<LL> num;
set<LL>::iterator it; void cal(LL x, LL y)
{
for(LL i = 2; i * i <= x; i++){
if(x % i == 0){
num.insert(i);
}
while(x % i == 0){
x /= i;
}
}
if(x > 1)
num.insert(x); for(LL i = 2; i * i <= y; i++){
if(y % i == 0){
num.insert(i);
}
while(y % i == 0){
y /= i;
}
}
if(y > 1){
num.insert(y);
}
} int main()
{
while(scanf("%d", &n) != EOF){
num.clear();
for(int i = 0; i < n; i++){
scanf("%I64d%I64d", &a[i], &b[i]);
}
cal(a[0], b[0]); if(n == 1){
it = num.begin();
printf("%I64d\n", *it);
}
else{
bool ed = false;
for(it = num.begin(); it != num.end(); it++){
bool flag = true;
LL t = *it;
for(int j = 1; j < n; j++){
if((a[j] % t != 0) && (b[j] % t != 0)){
flag = false;
break;
}
}
if(flag){
printf("%I64d\n", t);
ed = true;
break;
}
}
if(!ed){
printf("-1\n");
}
}
}
return 0;
}

codeforces#505--B Weakened Common Divisor的更多相关文章

  1. CF #505 B Weakened Common Divisor(数论)题解

    题意:给你n组,每组两个数字,要你给出一个数,要求这个是每一组其中一个数的因数(非1),给出任意满足的一个数,不存在则输出-1. 思路1:刚开始乱七八糟暴力了一下果断超时,然后想到了把每组两个数相乘, ...

  2. CF1025B Weakened Common Divisor 数学

    Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...

  3. Codeforces #505(div1+div2) B Weakened Common Divisor

    题意:给你若干个数对,每个数对中可以选择一个个元素,问是否存在一种选择,使得这些数的GCD大于1? 思路:可以把每个数对的元素乘起来,然后求gcd,这样可以直接把所有元素中可能的GCD求出来,从小到大 ...

  4. 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) B】Weakened Common Divisor

    [链接] 我是链接,点我呀:) [题意] 给你n个数对(ai,bi). 让你求一个大于1的数字x 使得对于任意的i x|a[i] 或者 x|b[i] [题解] 求出第一个数对的两个数他们有哪些质因子. ...

  5. CodeForces - 1025B Weakened Common Divisor

    http://codeforces.com/problemset/problem/1025/B 大意:n对数对(ai,bi),求任意一个数满足是所有数对中至少一个数的因子(大于1) 分析: 首先求所有 ...

  6. codeforces 1025B Weakened Common Divisor(质因数分解)

    题意: 给你n对数,求一个数,可以让他整除每一对数的其中一个 思路: 枚举第一对数的质因数,然后暴力 代码: #include<iostream> #include<cstdio&g ...

  7. CF1025B Weakened Common Divisor【数论/GCD/思维】

    #include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...

  8. CF1025B Weakened Common Divisor

    思路: 首先选取任意一对数(a, b),分别将a,b进行因子分解得到两个因子集合然后取并集(无需计算所有可能的因子,只需得到不同的质因子即可),之后再暴力一一枚举该集合中的元素是否满足条件. 时间复杂 ...

  9. CF1025B Weakened Common Divisor 题解

    Content 定义 \(n\) 个数对 \((a_1,b_1),(a_2,b_2),(a_3,b_3),...,(a_n,b_n)\) 的 \(\text{WCD}\) 为能够整除每个数对中至少一个 ...

随机推荐

  1. static、extern分析

    1.extern extern在变量声明中有这样一个作用:你要在demo2.cpp中引用demo1.cpp中的一个全局变量,就要在demo2.h中用extern来声明这个全局变量(或者在demo1.h ...

  2. ffplay(2.0.1)中的音视频同步

    最近在看ffmpeg相关的一些东西,以及一些播放器相关资料和代码. 然后对于ffmpeg-2.0.1版本下的ffplay进行了大概的代码阅读,其中这里把里面的音视频同步,按个人的理解,暂时在这里作个笔 ...

  3. HttpHelper万能框架GetMergeCookie的问题

    用万能框架写了一个DZ带验证码POST登录一直错误 http://www.sufeinet.com/thread-17795-1-1.html 调试半天发现是框架GetMergeCookie的问题,, ...

  4. Oracle居然把Java EE的未来押在Rest API上了

        然而Lehman并不赞同Rahman对Java EE 9的说法,所以他重申Oracle暂时专注于Java EE 8."我们正在倾全力推出EE 8,现在这是我们主要的关注点," ...

  5. 面试题:谈谈如何优化MYSQL数据库查询

    1.优化数据类型 MySQL中数据类型有多种,如果你是一名DBA,正在按照优化的原则对数据类型进行严格的检查,但开发人员可能会选择他们认为最简单的方案,以加快编码速度,或者选择最明显的选择,因此,你可 ...

  6. 几张图轻松理解String.intern()

    https://blog.csdn.net/soonfly/article/details/70147205 在翻<深入理解Java虚拟机>的书时,又看到了2-7的 String.inte ...

  7. DM8168 PWM驱动与測试程序

    昨天把DM8168的Timer设置给摸了一遍,为写PWM的底层驱动做好了准备,如今就要进入主题了. dm8168_pwm.c: #include <linux/module.h> #inc ...

  8. swift - UIStepper的用法

    在网上查看学习资料的时候,看到有这个控件,所以就自己写了下,感觉在某些特定的地方用的还是挺方便的! 不过,个人感觉,局限性太大! 1.初始化(创建个label是为了让大家看到具体的数值) let st ...

  9. (DCloud)用这个来写H5,好像好厉害的样子哦

    HBuilder: http://www.dcloud.io MUI: http://dev.dcloud.net.cn/mui/getting-started/ http://dev.dcloud. ...

  10. hive与hbase的联系与区别

    hive与hbase的联系与区别: 共同点: 1.hbase与hive都是架构在hadoop之上的.都是用hadoop作为底层存储. 他们的底层是要通过mapreduce分布式计算的,hbase.hi ...