MOOCULUS微积分-2: 数列与级数学习笔记 2. Series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授。
PDF格式教材下载 Sequences and Series
本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution
Summary
- Suppose $(a_n)$ is a sequence with associated series $$\sum_{k=1}^\infty a_k$$ The sequence of partial sums associated to these objects is the sequence $$s_n = \sum_{k=1}^n a_k$$
- Consider the series $$\sum_{k=1}^\infty a_k$$ This series converges if the sequence of partial sums $$s_n = \sum_{k=1}^n a_k$$ converges. More precisely, if $$\lim_{n \to \infty} s_n = L$$ we then write $$\sum_{k=1}^\infty a_k = L$$ and say, "the series $\sum_{k=1}^\infty a_k$ converges to $L$."
If the sequence of partial sums diverges, we say that the series diverges. - A series of the form $$\sum_{k=0}^\infty a_0 \, r^k$$ is called a geometric series.
- Suppose $a_0 \neq 0$. Then for a real number $r$ such that $|r| < 1$, the geometric series $$\sum_{k=0}^\infty a_0\, r^k$$ converges to $\frac{a_0}{1-r}$.
For a real number $r$ where $|r| \geq 1$, the aforementioned geometric series diverges. - Consider the series $$\sum_{k=0}^\infty a_k$$ and suppose $c$ is a nonzero constant. Then $$\sum_{k=0}^\infty a_k$$ and $$\sum_{k=0}^\infty c\,a_k$$ share a common fate: either both series converge, or both series diverge.
Moreover, when $$\sum_{k=0}^\infty a_k$$ converges, $$\sum_{k=0}^\infty c \, a_k = c \cdot \sum_{k=0}^\infty a_k$$ - Suppose $$\sum_{k=0}^\infty a_k$$ and $$\sum_{k=0}^\infty b_k$$ are convergent series. Then $$\sum_{k=0}^\infty (a_k+b_k)$$ is convergent, and
$$\sum_{k=0}^\infty (a_k+b_k)=\left( \sum_{k=0}^\infty a_k\right)+\left(\sum_{k=0}^\infty b_k\right)$$ - If $$\sum_{k=0}^\infty a_k$$ converges then $$\lim_{n\to\infty}a_n=0$$
- Consider the series $$\sum_{k=0}^\infty a_k$$ If the limit $$\lim_{n\to\infty}a_n$$ does not exist or has a value other than zero, then the series diverges.
We'll usually call this theorem the "$n^{\text{th}}$ term test." - The series $$\sum_{n=1}^\infty {1\over n} = \frac{1}{1} +\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$ is called the harmonic series.
- Consider the series $$\sum_{k=0}^\infty a_k$$ Assume the terms $a_k$ are non-negative. If the sequence of partial sums $s_n = a_0 + \cdots + a_n$ is bounded, then the series converges.
- Comparison Test
Suppose that $a_n$ and $b_n$ are non-negative for all $n$ and that, for some $N$, whenever $n \geq N$, we have $a_n \leq b_n$.
If $$\sum_{n=0}^\infty b_n$$ converges, so does $$\sum_{n=0}^\infty a_n$$ If $$\sum_{n=0}^\infty a_n$$ diverges, so does $$\sum_{n=0}^\infty b_n$$ - Cauchy Condensation Test
Suppose $(a_n)$ is a non-increasing sequence of positive numbers. The series $$\sum_{n=1}^\infty a_n$$ converges if and only if the series $$\sum_{n=0}^\infty \left( 2^n a_{2^n} \right)$$ converges. - $p$-series Test
$$\sum_{n=1}^{\infty} {1\over n^p}\ \begin{cases}\mbox{converges} & \mbox{when $p>1$}\\ \mbox{diverges} & \mbox{when $p\leq1$} \end{cases}$$
Exercises 2.7
1. Explain why $$\sum_{n=1}^\infty {n^2\over 2n^2+1}$$ diverges.
Solution:
By $n^{\text{th}}$ test, $$\lim_{n\to\infty} {n^2\over 2n^2+1}={1\over2}\neq0$$
Therefore it diverges.
2. Explain why $$\sum_{n=1}^\infty {5\over 2^{1/n}+14}$$ diverges.
Solution:
By $n^{\text{th}}$ test, $$\lim_{n\to\infty} {5\over 2^{1\over n}+14}={5\over1+14}={1\over3}\neq0$$ Thus it diverges.
3. Explain why $$\sum_{n=1}^\infty {3\over n}$$ diverges.
Solution:
$$\sum_{n=1}^\infty {3\over n}=3\cdot\sum_{n=1}^{\infty}{1\over n}$$ which is a harmonic series.
4. Compute $$\sum_{n=0}^\infty {4\over (-3)^n}- {3\over 3^n}$$
Solution:
Geometric series:
$$\sum_{n=0}^\infty {4\over (-3)^n}- {3\over 3^n}$$
$$=\sum_{n=0}^{\infty} 4\cdot(-{1\over3})^n-3\cdot({1\over3})^n$$
$$=4\cdot{1\over 1-(-{1\over3})}-3\cdot{1\over 1-{1\over3}}$$
$$=4\times{3\over4}-3\times{3\over2}=-{3\over2}$$
5. Compute $$\sum_{n=0}^\infty {3\over 2^n}+ {4\over 5^n}$$
Solution:
Geometric series:
$$\sum_{n=0}^\infty {3\over 2^n}+ {4\over 5^n}$$
$$= 3\cdot{1\over 1-{1\over2}}+4\cdot{1\over 1-{1\over5}}=6+5=11$$
6. Compute $$\sum_{n=0}^\infty {4^{n+1}\over 5^n}$$
Solution:
Geometric series:
$$\sum_{n=0}^\infty {4^{n+1}\over 5^n}$$
$$=\sum_{n=0}^{\infty}4\cdot({4\over5})^n=4\times{1\over 1-{4\over5}}=20$$
7. Compute $$\sum_{n=0}^\infty {3^{n+1}\over 7^{n+1}}$$
Solution:
Geometric series:
$$\sum_{n=0}^\infty {3^{n+1}\over 7^{n+1}}$$
$$=\sum_{n=0}^\infty {3\over7}\cdot{3^{n}\over 7^{n}}={3\over7}\times{1\over 1-{3\over7}}={3\over4}$$
8. Compute $$\sum_{n=1}^\infty \left({3\over 5}\right)^n$$
Solution:
Geometric series:
$$\sum_{n=1}^\infty \left({3\over 5}\right)^n$$
$$=\sum_{n=0}^\infty \left({3\over 5}\right)^n-1$$
$$={1\over 1-{3\over5}}-1={3\over2}$$
Alternatively, $$\sum_{n=1}^\infty \left({3\over 5}\right)^n={{3\over5}\over 1-{3\over5}}={3\over2}$$
9. Compute $$\sum_{n=1}^\infty {3^n\over 5^{n+1}}$$
Solution:
Geometric series:
$$\sum_{n=1}^\infty {3^n\over 5^{n+1}}$$
$$=\sum_{n=0}^\infty {1\over5}\cdot{3^n\over 5^{n}}-{1\over5}$$
$$={1\over5}\times{1\over 1-{3\over5}}-{1\over5}={3\over10}$$
Alternatively, $$\sum_{n=1}^\infty {3^n\over 5^{n+1}}={1\over5}\times{{3\over5}\over 1-{3\over5}}={3\over10}$$
Additional Exercises
1. Evaluate $$\sum_{n=5}^{\infty}(-{4\over7})^n$$
Solution:
Geometric series:
$$\sum_{n=5}^{\infty}(-{4\over7})^n={(-{4\over7})^5\over 1-(-{4\over7})}=-{1024\over26411}$$
2. Test $$\sum_{n=2}^{\infty}-8\cdot({6\over11})^n$$
Solution:
$$\sum_{n=2}^{\infty}-8\cdot({6\over11})^n=-8\cdot\sum_{n=2}^{\infty}({6\over11})^n$$ which is a geometric series and $r < 1$, therefore it converges.
3. Evaluate $$\sum_{i=2}^{\infty}{12\over 9i^2+21i+10}$$
Solution:
$$\sum_{i=2}^{\infty}{12\over 9i^2+21i+10}=\sum_{i=2}^{\infty}{12\over (3i+5) (3i+2)}$$
$$=\sum_{i=2}^{\infty}4\cdot({1\over 3i+2}-{1\over 3i+5})=4\times{1\over8}={1\over2}$$
4. Test $$\sum_{m=3}^{\infty}{(7m+5)\cdot(m-8)\over(5m+4)\cdot(5m-7)}$$
Solution:
By $n^{\text{th}}$ test: $$\lim_{m\to\infty}{(7m+5)\cdot(m-8)\over(5m+4)\cdot(5m-7)}={7\over25}\neq0$$
Thus it diverges.
5. Test $$\sum_{n=0}^{\infty}{5\over 7n+42}$$
Solution:
$$\sum_{n=0}^{\infty}{5\over 7n+42}={5\over7}\cdot\sum_{n=0}^{\infty}{1\over n+6}$$ which is a harmonic series. Thus it diverges.
6. Test $$\sum_{n=5}^{\infty}{2(n^2+2)\over 7^n}$$
Solution:
Comparison test:
$$\sum_{n=5}^{\infty}{2(n^2+2)\over 7^n}=\sum_{n=5}^{\infty}{2n^2+4\over 7^n}\leq\sum_{n=5}^{\infty}{2^n\over 7^n},\ \text{when}\ n\geq7$$
And $$\sum_{n=5}^{\infty}{2^n\over 7^n}=\sum_{n=5}^{\infty}({2\over7})^n$$
is a geometric series which is convergent. Thus $$\sum_{n=5}^{\infty}{2(n^2+2)\over 7^n}$$ is convergent, too.
MOOCULUS微积分-2: 数列与级数学习笔记 2. Series的更多相关文章
- MOOCULUS微积分-2: 数列与级数学习笔记 Review and Final
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 7. Taylor series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 6. Power series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 4. Alternating series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 3. Convergence tests
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 1. Sequences
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- 利用python数据分析panda学习笔记之Series
1 Series a:类似一维数组的对象,每一个数据与之相关的数据标签组成 b:生成的左边为索引,不指定则默认从0开始. from pandas import Series,DataFrame imp ...
- 《Java学习笔记(第8版)》学习指导
<Java学习笔记(第8版)>学习指导 目录 图书简况 学习指导 第一章 Java平台概论 第二章 从JDK到IDE 第三章 基础语法 第四章 认识对象 第五章 对象封装 第六章 继承与多 ...
随机推荐
- 教你写一个web远程控制小工具
惯例先上图 晚上躺床上了,发现忘关电脑了,又不想起来关,来用手机控制电脑多好,百度了下,果然一大把.哈,我自己为什么不自己也实现个呢,任意的自己diy.Just do it. 如果不想看如何实现,那么 ...
- 仿造slither.io第二步:加个地图,加点吃的
前言 上一篇博文讲了如何造一条蛇,现在蛇有了,要让它自由的活动起来,就得有个地图啊,而且只能走也不行呀,还得有点吃的,所以还得加点食物,这一篇博文就来讲讲如何添加地图和食物. 预览效果 当前项目最新效 ...
- 37-more 简明笔记
分页显示文本 more [options] file more用于分页显示文本文件,最早出现在BSD当中,但这一命令非常基本,后来less命令对其做了增强,所谓的less也就是少即是多 参数 file ...
- 【摘抄】将xml注释文档生成网页
config.SetDocumentationProvider(new XmlDocumentationProvider(HttpContext.Current.Server.MapPath(&quo ...
- extJs学习基础2
一个登陆界面: Ext.onReady(function(){ Ext.define('Login', { //renderTo: Ext.getBody(), extend: 'Ext.window ...
- 51nod 1013快速幂 + 费马小定理
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1013 这是一个等比数列,所以先用求和公式,然后和3^(n+1)有关,有n ...
- Maven异常Type Project configuration is not up-to-date with pom.xml. Run Maven->Update Project or use Quick Fix
eclipse maven错误“Project configuration is not up-to-date with pom.xml. Run proje” 导入maven工程后,出现如下错误: ...
- Struts2+Spring+Mybatis+Junit 测试
Struts2+Spring+Mybatis+Junit 测试 博客分类: HtmlUnit Junit Spring 测试 Mybatis package com.action.kioskmoni ...
- The following signatures couldn't be verified because the public key is not available: NO_PUBKEY 51716619E084DAB9
sudo su gpg --keyserver keyserver.ubuntu.com --recv-keys 51716619E084DAB9 gpg -a --export 51716619E0 ...
- Event&Condition pyton
Event 一个线程需要根据另外一个线程的状态来确定自己的下一步操作,需要调用threading库中Event对象:Event包含一个可由线程设置的信号标志,在初始情况下,event对象的标志位为假( ...