Big binary tree

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 670    Accepted Submission(s): 235

Problem Description

You are given a complete binary tree with n nodes. The root node is numbered 1, and node x's father node is ⌊x/2⌋. At the beginning, node x has a value of exactly x. We define the value of a path as the sum of all nodes it passes(including two ends, or one if the path only has one node). Now there are two kinds of operations:
1.  change u x Set node u's value as x(1≤u≤n;1≤x≤10^10)
2.  query u Query the max value of all paths which passes node u.
 
Input
There are multiple cases.
For each case:
The first line contains two integers n,m(1≤n≤10^8,1≤m≤10^5), which represent the size of the tree and the number of operations, respectively.
Then m lines follows. Each line is an operation with syntax described above.
 
Output
For each query operation, output an integer in one line, indicating the max value of all paths which passes the specific node.
 
Sample Input
6 13
query 1
query 2
query 3
query 4
query 5
query 6
change 6 1
query 1
query 2
query 3
query 4
query 5
query 6
 
Sample Output
17
17
17
16
17
17
12
12
12
11
12
12
 
Source
 
Recommend
liuyiding   |   We have carefully selected several similar problems for you:  6216 6215 6214 6213 6212 
 
题意:题目是给一棵完全二叉树,从上到下从左到右给每个节点标号,每个点有权值,初始权值为其标号,然后有两种操作: 
1、把u点权值改为x 
2、查询所有经过u点的路径中,路径上的点权和最大。
思路:每次修改只会改变log(n)个节点,最多改变log(n)*m个节点,约为2.7*10^6个节点,但是n最大为10^8,所以只能用map存储。没有修改过的结点不需要存储,因为没有修改过的话一定是右儿子大,有以只需要往右走就能寻找到以当前点为根的最大路径点权和,但是如果左边的结点数比右边的多的话就需要往左了。
代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<bitset>
#include<map>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
#define bug(x) cout<<"bug"<<x<<endl;
#define PI acos(-1.0)
#define eps 1e-8
const int N=2e5+,M=1e5+;
const int inf=0x3f3f3f3f;
const ll INF=1e18+,mod=1e9+;
ll n;
char s[];
map<ll,ll> vis,deep;
ll getnum(ll tmp)
{
ll ans=;
while(tmp<=n)
{
if(deep.find(tmp)!=deep.end()) return ans+deep[tmp];
if(vis.find(tmp)==vis.end()) ans+=tmp;
else ans+=vis[tmp];
ll tmp1=tmp<<,tmp2=tmp<<|;
int h1=,h2=;
while(tmp1<=n) tmp1=tmp1<<,h1++;
while(tmp2<=n) tmp2=tmp2<<,h2++;
if(h1==h2) tmp=tmp<<|;
else tmp=tmp<<;
}
return ans;
}
void getchild(ll u,ll &ch1,ll &ch2)
{
ch1=getnum(u<<),ch2=getnum(u<<|);
}
int main()
{
int m;
while(scanf("%lld%d",&n,&m)!=EOF)
{
vis.clear(),deep.clear();
for(int i=; i<=m; i++)
{
ll u,x;
scanf("%s %lld",s,&u);
if(s[]=='c')
{
scanf("%lld",&x);
vis[u]=x;
while(u>=)
{
ll ch1,ch2;
getchild(u,ch1,ch2);
if(vis.find(u)==vis.end()) deep[u]=max(ch1,ch2)+u;
else deep[u]=max(ch1,ch2)+vis[u];
u/=;
}
}
else
{
ll ch1,ch2;
getchild(u,ch1,ch2);
u=ch1>ch2?(u<<):(u<<|);
ll cou=max(ch1,ch2);
ll ans=;
while(u>)
{
if(vis.find(u/)==vis.end()) cou+=u/;
else cou+=vis[u/];
ans=max(ans,getnum(u^)+cou);
u/=;
}
printf("%lld\n",ans);
}
}
}
return ;
}

HDU 6161.Big binary tree 二叉树的更多相关文章

  1. 2017 Multi-University Training Contest - Team 9 1001&&HDU 6161 Big binary tree【树形dp+hash】

    Big binary tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  2. 2017多校第9场 HDU 6161 Big binary tree 思维,类似字典树

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6161 题意: 题目是给一棵完全二叉树,从上到下从左到右给每个节点标号,每个点有权值,初始权值为其标号, ...

  3. Leetcode 110 Balanced Binary Tree 二叉树

    判断一棵树是否是平衡树,即左右子树的深度相差不超过1. 我们可以回顾下depth函数其实是Leetcode 104 Maximum Depth of Binary Tree 二叉树 /** * Def ...

  4. [LeetCode] 111. Minimum Depth of Binary Tree ☆(二叉树的最小深度)

    [Leetcode] Maximum and Minimum Depth of Binary Tree 二叉树的最小最大深度 (最小有3种解法) 描述 解析 递归深度优先搜索 当求最大深度时,我们只要 ...

  5. [LeetCode] 111. Minimum Depth of Binary Tree 二叉树的最小深度

    Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along the shor ...

  6. [LeetCode] 543. Diameter of Binary Tree 二叉树的直径

    Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a b ...

  7. [LeetCode] Serialize and Deserialize Binary Tree 二叉树的序列化和去序列化

    Serialization is the process of converting a data structure or object into a sequence of bits so tha ...

  8. [LeetCode] Lowest Common Ancestor of a Binary Tree 二叉树的最小共同父节点

    Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...

  9. [LeetCode] Minimum Depth of Binary Tree 二叉树的最小深度

    Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along the shor ...

随机推荐

  1. java-其他-索引

    数据结构 设计模式 算法题

  2. Spring 框架用到的 9 个设计模式汇总!

      1. 简单工厂 又叫做静态工厂方法(StaticFactory Method)模式,但不属于23种GOF设计模式之一. 简单工厂模式的实质是由一个工厂类根据传入的参数,动态决定应该创建哪一个产品类 ...

  3. mybatis 映射生成mapper和pojo ---逆向工程的使用过程

    使用逆向工程生成mapper和pojo 2. 新建一个项目,随便叫什么 3.导入mybatis-generator-core .mybatis.mybatis-spring.log4j等jar 4.在 ...

  4. python3下同时取得exe、zip和chm下载地址

    from selenium import webdriverimport osimport timeimport re cur_path=os.getcwd() #得到程序的当前目录str_file= ...

  5. 201772020113 李清华《面向对象程序设计(java)》第十五周学习总结

    1.实验目的与要求 (1) 掌握Java应用程序的打包操作: (2) 了解应用程序存储配置信息的两种方法: (3) 掌握基于JNLP协议的java Web Start应用程序的发布方法: (5) 掌握 ...

  6. ie8兼容性总结

    DOCTYPE 首先需要确保你的HTML页面开始部分要有DOCTYPE声明.DOCTYPE告诉浏览器使用什么样的HTML或XHTML规范来解析HTML文档,具体会影响: 对标记.attributes ...

  7. Django上传文件和上传图片(不刷新页面)

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. 侧脸生成正脸概论与精析(一)Global and Local Perception GAN

    侧脸生成正脸我一直很感兴趣,老早就想把这块理一理的.今天来给大家分享一篇去年的老文章,如果有不对的地方,请斧正. Beyond Face Rotation: Global and Local Perc ...

  9. 基于maven来Spring MVC的环境搭建遇到“坑”

    1.注解配置路径问题: 在web.xml中配置spring mvc 路径时, 应该配置如下:classpath:classpath:spring-* 2.jdk版本和Spring MVC版本不一致问题 ...

  10. 1、let const

    1.作用域的概念 es6之前 es5 分为 全局作用域 函数作用域 es6 新增块级作用域 2.let const 与 var 区别 用var 可以无报错 此代码报错 引出 块级作用域 用 {} 包起 ...