折线图与面积图

① 单线图、多线图
② 面积图、堆叠面积图

1. 折线图--单线图

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
% matplotlib inline import warnings
warnings.filterwarnings('ignore')
# 不发出警告 from bokeh.io import output_notebook
output_notebook()
# 导入notebook绘图模块 from bokeh.plotting import figure,show
# 导入图表绘制、图标展示模块

source = ColumnDataSource(data = df)  这里df中index、columns都必须有名称字段
p.line(x='index',y='value',source = source, line_width=1, line_alpha = 0.8, line_color = 'black',line_dash = [10,4])
# 绘制折线图
p.circle(x='index',y='value',source = source, size = 2,color = 'red',alpha = 0.8) # 绘制折点
# 1、折线图 - 单线图

from bokeh.models import ColumnDataSource
# 导入ColumnDataSource模块
# 将数据存储为ColumnDataSource对象
# 参考文档:http://bokeh.pydata.org/en/latest/docs/user_guide/data.html
# 可以将dict、Dataframe、group对象转化为ColumnDataSource对象 df = pd.DataFrame({'value':np.random.randn(100).cumsum()})
# 创建数据
df.index.name = 'index'
source = ColumnDataSource(data = df)
# 转化为ColumnDataSource对象
# 这里注意了,index和columns都必须有名称字段 p = figure(plot_width=600, plot_height=400)
p.line(x='index',y='value',source = source, # 设置x,y值, source → 数据源
line_width=1, line_alpha = 0.8, line_color = 'black',line_dash = [10,4]) # 线型基本设置
# 绘制折线图
p.circle(x='index',y='value',source = source,
size = 2,color = 'red',alpha = 0.8)
# 绘制折点 show(p)
df.head()

 

可以将dict、Dataframe、group对象转化为ColumnDataSource对象
dic = {'index':df.index.tolist(), 'value':df['value'].tolist()} #一般把它先变成字典的格式
source = ColumnDataSource(data=dic)
#不转换为字典也可以,把index提取出来df.index.name = 'a' --->>> source = ColumnDataSource(data = df)
 
from bokeh.models import ColumnDataSource
# 导入ColumnDataSource模块
# 将数据存储为ColumnDataSource对象
# 参考文档:http://bokeh.pydata.org/en/latest/docs/user_guide/data.html
# 可以将dict、Dataframe、group对象转化为ColumnDataSource对象 dic = {'index':df.index.tolist(), 'value':df['value'].tolist()} #一般把它先变成字典的格式
source = ColumnDataSource(data=dic)
print(source) p = figure(plot_width=600, plot_height=400)
p.line(x='index',y='value',source = source, # 设置x,y值, source → 数据源
line_width=1, line_alpha = 0.8, line_color = 'black',line_dash = [10,4]) # 线型基本设置
# 绘制折线图 show(p)

df.index.name = 'a'                      #不转换为字典也可以,把index提取出来
source = ColumnDataSource(data = df)
p = figure(plot_width=600, plot_height=400)
p.line(x='a',y='value',source = source, # 设置x,y值, source → 数据源
line_width=1, line_alpha = 0.8, line_color = 'black',line_dash = [10,4]) # 线型基本设置
# 绘制折线图
show(p)

df.index.name = 'a'
source = ColumnDataSource(data = df)
p = figure()
p.line(x='a',y='value',source = source) # 设置x,y值, source → 数据源 show(p)

2. 折线图--多线图

① multi_line
p.multi_line([df.index, df.index], [df['A'], df['B']], color=["firebrick", "navy"], alpha=[0.8, 0.6], line_width=[2,1],)
# 2、折线图 - 多线图
# ① multi_line df = pd.DataFrame({'A':np.random.randn(100).cumsum(),"B":np.random.randn(100).cumsum()})
# 创建数据 p = figure(plot_width=600, plot_height=400)
p.multi_line([df.index, df.index], #第一条线的横坐标和第二条线的横坐标
[df['A'], df['B']], # 注意x,y值的设置 → [x1,x2,x3,..], [y1,y2,y3,...] 第一条线的Y值和第二条线的Y值
color=["firebrick", "navy"], # 可同时设置 → color= "firebrick";也可以统一弄成一个颜色。
alpha=[0.8, 0.6], # 可同时设置 → alpha = 0.6
line_width=[2,1], # 可同时设置 → line_width = 2
)
# 绘制多段线
# 这里由于需要输入具体值,故直接用dataframe,或者dict即可 show(p)

② 多个line
p.line(x, 10**(x**2), legend="y=10^(x^2)",line_color="coral", line_dash="dashed", line_width=2)
# 2、折线图 - 多线图
# ② 多个line x = np.linspace(0.1, 5, 100)
# 创建x值 p = figure(title="log axis example", y_axis_type="log",y_range=(0.001, 10**22))
# 这里设置对数坐标轴 p.line(x, np.sqrt(x), legend="y=sqrt(x)",
line_color="tomato", line_dash="dotdash")
# line1 p.line(x, x, legend="y=x")
p.circle(x, x, legend="y=x")
# line2,折线图+散点图 p.line(x, x**2, legend="y=x**2")
p.circle(x, x**2, legend="y=x**2",fill_color=None, line_color="olivedrab")
# line3 p.line(x, 10**x, legend="y=10^x",line_color="gold", line_width=2)
# line4 p.line(x, x**x, legend="y=x^x",line_dash="dotted", line_color="indigo", line_width=2)
# line5 p.line(x, 10**(x**2), legend="y=10^(x^2)",line_color="coral", line_dash="dashed", line_width=2)
# line6 p.legend.location = "top_left"
p.xaxis.axis_label = 'Domain'
p.yaxis.axis_label = 'Values (log scale)'
# 设置图例及label show(p)

3. 面积图

# 3、面积图 - 单维度面积图

s = pd.Series(np.random.randn(100).cumsum())
s.iloc[0] = 0
s.iloc[-1] = 0
# 创建数据
# 注意设定起始值和终点值为最低点
p = figure(plot_width=600, plot_height=400)
p.patch(s.index, s.values, # 设置x,y值
line_width=1, line_alpha = 0.8, line_color = 'black',line_dash = [10,4], # 线型基本设置
fill_color = 'black',fill_alpha = 0.2
)
# 绘制面积图
# .patch将会把所有点连接成一个闭合面 show(p)

p.circle(s.index, s.values,size = 5,color = 'red',alpha = 0.8)
# 绘制折点

# 3、面积图 - 面积堆叠图

from bokeh.palettes import brewer
# 导入brewer模块 N = 20
cats = 10 #分类
rng = np.random.RandomState(1)
df = pd.DataFrame(rng.randint(10, 100, size=(N, cats))).add_prefix('y')
# 创建数据,shape为(20,10)
df_top = df.cumsum(axis=1) # 每一个堆叠面积图的最高点
df_bottom = df_top.shift(axis=1).fillna({'y0': 0})[::-1] # 每一个堆叠面积图的最低点,并反向
df_stack = pd.concat([df_bottom, df_top], ignore_index=True) # 数据合并,每一组数据都是一个可以围合成一个面的散点集合
# 得到堆叠面积数据
# print(df.head())
# print(df_top.tail())
# print(df_bottom.head())
# df_stack colors = brewer['Spectral'][df_stack.shape[1]] # 根据变量数拆分颜色
x = np.hstack((df.index[::-1], df.index)) # 得到围合顺序的index,这里由于一列是20个元素,所以连接成面需要40个点
print(x)
p = figure(x_range=(0, N-1), y_range=(0, 700))
p.patches([x] * df_stack.shape[1], # 得到10组index
[df_stack[c].values for c in df_stack], # c为df_stack的列名,这里得到10组对应的valyes
color=colors, alpha=0.8, line_color=None) # 设置其他参数 show(p)
[19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0  0  1  2  3  4
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]

Python交互图表可视化Bokeh:4. 折线图| 面积图的更多相关文章

  1. Python交互图表可视化Bokeh:5 柱状图| 堆叠图| 直方图

    柱状图/堆叠图/直方图 ① 单系列柱状图② 多系列柱状图③ 堆叠图④ 直方图 1.单系列柱状图 import numpy as np import pandas as pd import matplo ...

  2. Python交互图表可视化Bokeh:1. 可视交互化原理| 基本设置

    Bokeh pandas和matplotlib就可以直接出分析的图表了,最基本的出图方式.是面向数据分析过程中出图的工具:Seaborn相比matplotlib封装了一些对数据的组合和识别的功能:用S ...

  3. Python交互图表可视化Bokeh:7. 工具栏

    ToolBar工具栏设置 ① 位置设置② 移动.放大缩小.存储.刷新③ 选择④ 提示框.十字线 1. 位置设置 import numpy as np import pandas as pd impor ...

  4. Python交互图表可视化Bokeh:6. 轴线| 浮动| 多图表

    绘图表达进阶操作 ① 轴线设置② 浮动设置③ 多图表设置 1. 轴线标签设置 设置字符串 import numpy as np import pandas as pd import matplotli ...

  5. Python交互图表可视化Bokeh:3. 散点图

    散点图 ① 基本散点图绘制② 散点图颜色.大小设置方法③ 不同符号的散点图 1. 基本散点图绘制 import numpy as np import pandas as pd import matpl ...

  6. Python交互图表可视化Bokeh:2. 辅助参数

    图表辅助参数设置 辅助标注.注释.矢量箭头 参考官方文档:https://bokeh.pydata.org/en/latest/docs/user_guide/annotations.html#col ...

  7. 06. Matplotlib 2 |折线图| 柱状图| 堆叠图| 面积图| 填图| 饼图| 直方图| 散点图| 极坐标| 图箱型图

    1.基本图表绘制 plt.plot() 图表类别:线形图.柱状图.密度图,以横纵坐标两个维度为主同时可延展出多种其他图表样式 plt.plot(kind='line', ax=None, figsiz ...

  8. pyecharts v1 版本 学习笔记 折线图,面积图

    折线图 折线图 基本demo import pyecharts.options as opts from pyecharts.charts import Line c = ( Line() .add_ ...

  9. Python:数据可视化pyecharts的使用

    什么是pyecharts? pyecharts 是一个用于生成 Echarts 图表的类库. echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化.pyecharts 是一个用于生 ...

随机推荐

  1. 【原创】Linux基础之windows linux双系统

    1 下载iso opensuse 下载: http://download.opensuse.org/distribution/openSUSE-stable/iso/openSUSE-Leap-15. ...

  2. python之__new__()

    __new__() 是在新式类中新出现的方法,它作用在构造方法建造实例之前,可以这么理解,在 Python 中存在于类里面的构造方法 __init__() 负责将类的实例化,而在 __init__() ...

  3. 解决 安装或卸载软件时报错Error 1001 的问题

    卸载或安装程序时出错1001:错误1001可能发生在试图更新.修复或卸载windows os中的特定程序时.此问题通常是由于程序的先前安装损坏而引起的. 错误“1001”通常会遇到,因为程序的先前安装 ...

  4. Ubuntu16.04配置Tomcat的80端口访问

    [问题描述] 在阿里云 ECS 服务器 Ubuntu16.04 下部署 Java Web 应用时,发现配置的 Tomcat 服务启动后 80 端口无法被监听. [问题原因] 出现该问题的主要原因是:非 ...

  5. Failed to execute goal org.apache.tomcat.maven:tomcat7-maven-plugin:2.2:deploy (default-cli) on project Resource: Cannot invoke Tomcat manager: Connection refused: connect -> [Help 1]

    1.问题描述 在 DOS 下执行 tomcat7-maven-plugin 插件部署,启动 Apache Tomcat 服务报错如下: D:\2018\code\XXX>mvn tomcat7: ...

  6. Swift 中 insetBy(dx: CGFloat, dy: CGFloat) -> CGRect 用法详解

    insetBy(dx: CGFloat, dy: CGFloat) -> CGRect 点击头文件进去 可以发现它是返回的一个CGRect insetBy方法是CGRect 的一个方法 dx后面 ...

  7. ionic3 点击input 弹出白色遮罩 遮挡上部内容

    在Manifest中的activity里设置android:windowSoftInputMode为adjustPan,默认为adjustResize,当前窗口的内容将自动移动以便当前焦点从不被键盘覆 ...

  8. spring boot 整合 shiro

    shrio官网:https://shiro.apache.org/ Apache Shiro是一个功能强大且易于使用的Java安全框架,可执行身份验证,授权,加密和会话管理.借助Shiro易于理解的A ...

  9. 【linux】centos6.9通过virtualenv安装python3.5

    参考:http://www.linuxidc.com/Linux/2015-08/121352.htm wget https://www.python.org/ftp/python/3.5.4/Pyt ...

  10. java----作用域

    代码块: public class Demo { public static void main(String[] args){ Test t = new Test(); Test t1 = new ...