题目链接

题意

是否存在选择方案使所选的数$gcd=1$

思路

$f[i][j]$表示选$i$个数$gcd=j$的方案数,$cnt[i]$表示包含因子$i$的数的个数,则$f[i][j]=$$C_{cnt[j]}^i$$-f[i][d],j|d,j<d$

代码

#include <bits/stdc++.h>
#define DBG(x) cerr << #x << " = " << x << endl;
const int maxn = 3e5+5;
const int mod = 1e9+7;
using namespace std;
typedef long long LL; int n,a[maxn];
int tmp,cnt[maxn];
LL f[15][maxn];
LL inv[maxn],fac[maxn]; LL qpow(LL a,LL b,LL p){
LL res=1;
while(b){
if(b&1)res=(res*a)%p;
a=(a*a)%p;
b>>=1;
}
return res%p;
} int C(int a,int b){
return ((((fac[a]*inv[b])%mod)*inv[a-b])%mod)%mod;
} void init(){
for(int i=1;i<maxn;i++)
for(int j=i+i;j<maxn;j+=i)cnt[i]+=cnt[j];
fac[0]=1;for(int i=1;i<=n;i++)fac[i]=(fac[i-1]*i)%mod;
inv[n]=qpow(fac[n],mod-2,mod);
for(int i=n;i>=1;i--)inv[i-1]=(inv[i]*1LL*i)%mod;
} int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
cnt[a[i]]++;
f[1][a[i]]++;
tmp=((i == 1) ? a[i] : __gcd(tmp,a[i]));
}
if(tmp != 1){puts("-1");return 0;}
else{
init();
for(int i=1;i<=7;i++){
for(int j=maxn-1;j>=1;j--){
f[i][j]=C(cnt[j],i);
for(int k=j+j;k<maxn;k+=j)f[i][j]=(f[i][j]-f[i][k]+mod)%mod;
}
if(f[i][1] > 0){printf("%d\n",i);return 0;}
}
}
}

Codeforces 1043F(容斥+dp)的更多相关文章

  1. HDU 5794 A Simple Chess (容斥+DP+Lucas)

    A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...

  2. [CF1086E]Beautiful Matrix(容斥+DP+树状数组)

    给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...

  3. 【BZOJ3622】已经没有什么好害怕的了 容斥+DP

    [BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...

  4. $bzoj2560$ 串珠子 容斥+$dp$

    正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多 ...

  5. CodeForces 559C Gerald and Gia (格路+容斥+DP)

    CodeForces 559C Gerald and Gia 大致题意:有一个 \(N\times M\) 的网格,其中有些格子是黑色的,现在需要求出从左上角到右下角不经过黑色格子的方案数(模 \(1 ...

  6. 【XSY3156】简单计数II 容斥 DP

    题目大意 定义一个序列的权值为:把所有相邻的相同的数合并为一个集合后,所有集合的大小的乘积. 特别的,第一个数和最后一个数是相邻的. 现在你有 \(n\) 种数,第 \(i\) 种有 \(c_i\) ...

  7. bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/ ...

  8. AGC 005D.~K Perm Counting(容斥 DP 二分图)

    题目链接 \(Description\) 给定\(n,k\),求 满足对于所有\(i\),\(|a_i-i|\neq k\)的排列的个数. \(2\leq n\leq 2000,\quad 1\leq ...

  9. ARC 101E.Ribbons on Tree(容斥 DP 树形背包)

    题目链接 \(Description\) 给定一棵\(n\)个点的树.将这\(n\)个点两两配对,并对每一对点的最短路径染色.求有多少种配对方案使得所有边都至少被染色一次. \(n\leq5000\) ...

随机推荐

  1. windows蜜汁调音

    哈,用的蜂鸣器,我静音了这东西还放. 只能调的很垃圾,但是很好玩. #include<cstdio> #include<windows.h> using namespace s ...

  2. JAVA版本8u171与8u172的区别

    用了java 7好几年了,今天闲来无事,想升级到 java 8,到官网下载的时候发现JAVA放出了8u171与8u172两个版本. 什么情况? 百度一下找到答案:https://blog.csdn.n ...

  3. R语言绘图(FZ)

    P-Value Central Lmit Theorem(CLT) mean(null>diff) hist(null) qqnorm(null) qqline(null) pops<-r ...

  4. CentOS7 yum安装、配置PostgreSQL 9.5

    PostgreSQL 9.5安装 1.添加RPM yum install https://download.postgresql.org/pub/repos/yum/9.5/redhat/rhel-7 ...

  5. Linux系统IO分析工具之iotop常用参数介绍

      Linux系统IO分析工具之iotop常用参数介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在一般运维工作中经常会遇到这么一个场景,服务器的IO负载很高(iostat中的 ...

  6. 5、JPA-映射-单向多对一

    多个订单对应一个用户 实体类 Customer package com.jpa.yingshe; import javax.persistence.*; @Table(name = "JPA ...

  7. PHP6天基础知识部分

    ---恢复内容开始--- (一).基础(PHP超文本预处理器) 1.PHP标记(2种) 1.<?php?>:大众的用法?和php之间不能有空格否则无效. 2.<??>:小众的用 ...

  8. Spring Boot 2下使用Feign找不到@EnableFeignClients的解决办法

    最近在实践Spring Boot 2+Spring Cloud(Finchley.M9),在用到Feign的时候发现@EnableFeignClients注解开不了,独立使用Feign是可以的,但就是 ...

  9. DirectX11 With Windows SDK--03 索引缓冲区、常量缓冲区

    前言 一个立方体有8个顶点,然而绘制一个立方体需要画12个三角形,如果按照前面的方法绘制的话,则需要提供36个顶点,而且这里面的顶点数据会重复4次甚至5次.这样的绘制方法会占用大量的内存空间. 接下来 ...

  10. 【leetcode-101】 对称二叉树

    101. 对称二叉树 (1过) 给定一个二叉树,检查它是否是镜像对称的. 例如,二叉树 [1,2,2,3,4,4,3] 是对称的. 1 / \ 2 2 / \ / \ 3 4 4 3 但是下面这个 [ ...