poj 3666 Making the Grade(离散化+dp)
Description
A straight dirt road connects two fields on FJ's farm, but it changes elevation more than FJ would like. His cows do not mind climbing up or down a single slope, but they are not fond of an alternating succession of hills and valleys. FJ would like to add and remove dirt from the road so that it becomes one monotonic slope (either sloping up or down).
You are given N integers A1, ... , AN (1 ≤ N ≤ 2,000) describing the elevation (0 ≤ Ai ≤ 1,000,000,000) at each of N equally-spaced positions along the road, starting at the first field and ending at the other. FJ would like to adjust these elevations to a new sequence B1, . ... , BN that is either nonincreasing or nondecreasing. Since it costs the same amount of money to add or remove dirt at any position along the road, the total cost of modifying the road is
|A1 - B1| + |A2 - B2| + ... + |AN - BN |
Please compute the minimum cost of grading his road so it becomes a continuous slope. FJ happily informs you that signed 32-bit integers can certainly be used to compute the answer.
Input
* Line 1: A single integer: N
* Lines 2..N+1: Line i+1 contains a single integer elevation: Ai
Output
* Line 1: A single integer that is the minimum cost for FJ to grade his dirt road so it becomes nonincreasing or nondecreasing in elevation.
Sample Input
7
1
3
2
4
5
3
9
Sample Output
3
题意:给你一组序列 要你求把 非严格不降序列或者非严格不升序列 的最小花费求出来 (由于这题测试数据的问题我只求了非严格不降);
思路:dp[i][j]=abs(j-a[i])+min(dp[i-1][k]);(k<=j) i表示前i个数 最大高度为j的 最小花费 而j很大有1e10 所以显然不能直接开这么大的数组 所以 我们可以
把现有的高度存进数组 再对数组排序(离散化) 这样 j就表示为在数组里下标为j的高度。
然后 min(dp[i-1][k]) 对于这个最小值 我们也没有必要再用一次循环取求 因为 k<=j 所以每次只需要用一个变量去跟新最小值即可
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
int a[];
int b[];
ll dp[][]; //dp[i][j]=abs(j-a[i])+min(dp[i-1][k]);(k<=j)
int n;
ll solveup(){
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++){
ll minn=dp[i-][];
for(int j=;j<=n;j++){
minn=min(minn,dp[i-][j]);
dp[i][j]=abs(b[j]-a[i])+minn;
}
}
ll ans=1e18;
for(int i=;i<=n;i++)
ans=min(ans,dp[n][i]);
return ans;
}
int main(){
ios::sync_with_stdio(false);
while(cin>>n){
for(int i=;i<=n;i++){
cin>>a[i];
b[i]=a[i];
}
sort(b+,b++n);
cout<<solveup()<<endl;
}
return ;
}
poj 3666 Making the Grade(离散化+dp)的更多相关文章
- Poj 3666 Making the Grade (排序+dp)
题目链接: Poj 3666 Making the Grade 题目描述: 给出一组数,每个数代表当前位置的地面高度,问把路径修成非递增或者非递减,需要花费的最小代价? 解题思路: 对于修好的路径的每 ...
- POJ - 3666 Making the Grade(dp+离散化)
Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...
- poj 3666 Making the Grade(dp离散化)
Making the Grade Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7068 Accepted: 3265 ...
- POJ 3666 Making the Grade (DP)
题意:输入N, 然后输入N个数,求最小的改动这些数使之成非严格递增即可,要是非严格递减,反过来再求一下就可以了. 析:并不会做,知道是DP,但就是不会,菜....d[i][j]表示前 i 个数中,最大 ...
- POJ 3666 Making the Grade (DP滚动数组)
题意:农夫约翰想修一条尽量平缓的路,路的每一段海拔是A[i],修理后是B[i],花费|A[i] – B[i]|,求最小花费.(数据有问题,代码只是单调递增的情况) #include <stdio ...
- POJ 3666 Making the Grade【DP】
读题堪忧啊,敲完了才发现理解错了..理解题必须看样例啊!! 题目链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110495#pro ...
- POJ 3666 Making the Grade(数列变成非降序/非升序数组的最小代价,dp)
传送门: http://poj.org/problem?id=3666 Making the Grade Time Limit: 1000MS Memory Limit: 65536K Total ...
- POJ 3666 Making the Grade (线性dp,离散化)
Making the Grade Time Limit : 2000/1000ms (Java/Other) Memory Limit : 131072/65536K (Java/Other) T ...
- [poj 3666] Making the Grade (离散化 线性dp)
今天的第一题(/ω\)! Description A straight dirt road connects two fields on FJ's farm, but it changes eleva ...
随机推荐
- Java8 Hash改进/内存改进
又开新坑o(*≧▽≦)ツ讲讲几个Java版本的特性,先开始Java8, HashMap的改进 HashMap采用哈希算法,先使用hashCode()判断哈希值是否相同,如果相同,再使用equals() ...
- django之路由层
一 Django中路由的作用 二 简单的路由配置 三 有名分组 四 路由分发 五 反向解析 六 名称空间 七 django2.0版的path 一 Django中路由的作用 URL配置(URLconf) ...
- springboot 如何操作redis
1.首先应该引入 依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactI ...
- python pip安装找不到指定包的时候怎么解决
在该网址上下载对应版本的包然后安装即可. https://www.lfd.uci.edu/~gohlke/pythonlibs/
- Spring中使用Ehcache的方法和注意事项
如何调用方法数据增加缓存 @Cacheable(value="MY_CACHE", key="'cache_business_' + #business_id" ...
- MyBatis基础:MyBatis入门(1)
1. MyBatis简介 MyBatis 是支持定制化 SQL.存储过程以及高级映射的优秀的持久层框架. MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集. MyBatis ...
- 一、kubeadm安装
一.官网 https://kubernetes.io/zh/docs/setup/independent/install-kubeadm/ 阿里云 kubernetes yum 仓库镜像 安装kube ...
- 魔术方法:__set、__get
__set: 在设置对象里边不能直接设置(或没有)的属性值的时候,自动去被调用 class Track { private $track_name; public function __set($na ...
- Lodop的JS模版代码、文档式模版 生成加载赋值博文索引
Lodop获取全部JS代码,传统JS模版的生成.LODOP设置打印设计返回JS代码是变量 LodopJS代码模版的加载和赋值 Lodop生成文档式模版 LodopJS文档式模版的加载和赋值 由于加载J ...
- Linux环境下安装NodeJS和mongoDB
前面的话 本文将详细介绍如何下Linux环境下安装NodeJS和mongoDB NodeJS [1]使用二进制包安装 1.在官网下载Linux环境下的NodeJS安装包 2.通过xftp软件将安装包上 ...