Description

A straight dirt road connects two fields on FJ's farm, but it changes elevation more than FJ would like. His cows do not mind climbing up or down a single slope, but they are not fond of an alternating succession of hills and valleys. FJ would like to add and remove dirt from the road so that it becomes one monotonic slope (either sloping up or down).

You are given N integers A1, ... , AN (1 ≤ N ≤ 2,000) describing the elevation (0 ≤ Ai ≤ 1,000,000,000) at each of N equally-spaced positions along the road, starting at the first field and ending at the other. FJ would like to adjust these elevations to a new sequence B1, . ... , BN that is either nonincreasing or nondecreasing. Since it costs the same amount of money to add or remove dirt at any position along the road, the total cost of modifying the road is

|AB1| + |AB2| + ... + |AN - BN |

Please compute the minimum cost of grading his road so it becomes a continuous slope. FJ happily informs you that signed 32-bit integers can certainly be used to compute the answer.

Input

* Line 1: A single integer: N
* Lines 2..N+1: Line i+1 contains a single integer elevation: Ai

Output

* Line 1: A single integer that is the minimum cost for FJ to grade his dirt road so it becomes nonincreasing or nondecreasing in elevation.

Sample Input

7

1

3

2

4

5

3

9

Sample Output

3

题意:给你一组序列 要你求把 非严格不降序列或者非严格不升序列 的最小花费求出来 (由于这题测试数据的问题我只求了非严格不降);

思路:dp[i][j]=abs(j-a[i])+min(dp[i-1][k]);(k<=j) i表示前i个数 最大高度为j的 最小花费 而j很大有1e10 所以显然不能直接开这么大的数组 所以 我们可以

把现有的高度存进数组 再对数组排序(离散化) 这样 j就表示为在数组里下标为j的高度。

然后 min(dp[i-1][k]) 对于这个最小值 我们也没有必要再用一次循环取求 因为 k<=j 所以每次只需要用一个变量去跟新最小值即可

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
int a[];
int b[];
ll dp[][]; //dp[i][j]=abs(j-a[i])+min(dp[i-1][k]);(k<=j)
int n;
ll solveup(){
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++){
ll minn=dp[i-][];
for(int j=;j<=n;j++){
minn=min(minn,dp[i-][j]);
dp[i][j]=abs(b[j]-a[i])+minn;
}
}
ll ans=1e18;
for(int i=;i<=n;i++)
ans=min(ans,dp[n][i]);
return ans;
}
int main(){
ios::sync_with_stdio(false);
while(cin>>n){
for(int i=;i<=n;i++){
cin>>a[i];
b[i]=a[i];
}
sort(b+,b++n);
cout<<solveup()<<endl;
}
return ;
}

poj 3666 Making the Grade(离散化+dp)的更多相关文章

  1. Poj 3666 Making the Grade (排序+dp)

    题目链接: Poj 3666 Making the Grade 题目描述: 给出一组数,每个数代表当前位置的地面高度,问把路径修成非递增或者非递减,需要花费的最小代价? 解题思路: 对于修好的路径的每 ...

  2. POJ - 3666 Making the Grade(dp+离散化)

    Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...

  3. poj 3666 Making the Grade(dp离散化)

    Making the Grade Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7068   Accepted: 3265 ...

  4. POJ 3666 Making the Grade (DP)

    题意:输入N, 然后输入N个数,求最小的改动这些数使之成非严格递增即可,要是非严格递减,反过来再求一下就可以了. 析:并不会做,知道是DP,但就是不会,菜....d[i][j]表示前 i 个数中,最大 ...

  5. POJ 3666 Making the Grade (DP滚动数组)

    题意:农夫约翰想修一条尽量平缓的路,路的每一段海拔是A[i],修理后是B[i],花费|A[i] – B[i]|,求最小花费.(数据有问题,代码只是单调递增的情况) #include <stdio ...

  6. POJ 3666 Making the Grade【DP】

    读题堪忧啊,敲完了才发现理解错了..理解题必须看样例啊!! 题目链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110495#pro ...

  7. POJ 3666 Making the Grade(数列变成非降序/非升序数组的最小代价,dp)

    传送门: http://poj.org/problem?id=3666 Making the Grade Time Limit: 1000MS   Memory Limit: 65536K Total ...

  8. POJ 3666 Making the Grade (线性dp,离散化)

    Making the Grade Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) T ...

  9. [poj 3666] Making the Grade (离散化 线性dp)

    今天的第一题(/ω\)! Description A straight dirt road connects two fields on FJ's farm, but it changes eleva ...

随机推荐

  1. Azure系列2.1.4 —— BlobInputStream

    (小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...

  2. Spark源码编译,官网学习

    这里以spark-1.6.0版本为例 官网网址   http://spark.apache.org/docs/1.6.0/building-spark.html#building-with-build ...

  3. Linux 文件及目录管理命令基础

    pwd   显示当前所在目录 cd 切换目录 cd 命令语法 cd [选项] 目录 cd 的常用选项: cd ~ /cd 切换到当前用户的加目录 cd . 保持当前目录不变 cd .. 切换到上级目录 ...

  4. 【转】Git 代码行统计命令集

    查看git上个人代码量 git log --author="username" --pretty=tformat: --numstat | awk '{ add += $1; su ...

  5. mysql数据库,安装 !创建!...详解!

    package cn.jiayou; /* 一.mysql? a.MySQL是Web世界中使用最广泛的数据库服务器. SQLite的特点? 1.是轻量级.可嵌入,但不能承受高并发访问,适合桌面和移动应 ...

  6. ADO.NET工具类(三)

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.D ...

  7. CSS边框效果

    前面的话 本文将详细介绍CSS边框效果 半透明边框 border:10px solid hsla(0, 0%, 100%,.5); background-clip:padding-box; 缝边效果 ...

  8. 自定义 ASP.NET Identity Data Model with EF

    One of the first issues you will likely encounter when getting started with ASP.NET Identity centers ...

  9. nginx 正向代理上网

    配置文件: server { #resolver 21.202.152.10; #指定DNS服务器IP地址 |如果指定IP$scheme://22.2.65.214$request_uri 可以不指定 ...

  10. Android 自定义ListView 修改数据

    当我们修改了 自定义ListView,如何更新界面上的控件呢? 两种方法: 1 重新绑定adapter (不推荐) Adapter_InboundPO adapter =(Adapter_Inboun ...