MT【265】a+b,ab
已知$a+b=1$,求$(a^3+1)(b^3+1)$的最大值_____

$(a^3+1)(b^3+1)=a^3+b^3+a^3+b^3+1$
$=(a+b)^3(a^2+b^2-ab)+a^3b^3+1$
$\overset{t=ab}{=}t^3-3t+2=(t-1)^2(t+2)$
$=\dfrac{1}{2}(1-t)(1-t)(2t+4)\le4$
MT【265】a+b,ab的更多相关文章
- MT【210】四点共圆+角平分线
(2018全国联赛解答最后一题)在平面直角坐标系$xOy$中,设$AB$是抛物线$y^2=4x$的过点$F(1,0)$的弦,$\Delta{AOB}$的外接圆交抛物线于点$P$(不同于点$A,O,B$ ...
- MT【319】分段递推数列
已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...
- MT【317】两次判别式
已知$a^2+b^2+c^2-ab-bc=1$求$c$的最大值______ 注意到$2c^2-3(a^2+b^2+c^2-ab-bc)=-(c-\dfrac{3}{2}b)^2-3(a-\dfrac{ ...
- MT【290】内外圆求三角最值
求$\sqrt{\dfrac{5}{4}-\sin x}+2\sqrt{\dfrac{9}{4}+\cos x-\sin x}$的最小值. 提示:$\sqrt{\dfrac{5}{4}-\sin x} ...
- MT【272】更大的视野,更好的思路.
已知$f(x)=\sum\limits_{k=1}^{2017}\dfrac{\cos kx}{\cos^k x},$则$f(\dfrac{\pi}{2018})=$_____ 分析:设$g(x)=\ ...
- MT【254】值域包含值域
已知函数$f(x)=x-\dfrac{1}{1+x},g(x)=x^2-2ax+4,$若对任意$x_1\in[0,1]$,存在$x_2\in[1,2]$,使得$f(x_1)=g(x_2)$,则实数$a ...
- MT【45】抛物线外一点作抛物线的切线(尺规作图题)
注1:S为抛物线焦点 注2:由切线的唯一性,以及切线时可以利用MT[42]评得到三角形全等从而得到切线平分$\angle MQS$得到
- MT【35】用复数得到的两组恒等式
特别的,当$r\rightarrow1^{-}$时有以下两个恒等式: 第二个恒等式有关的自主招生试题参考博文MT[31]傅里叶级数为背景的三角求和 评:利用两种展开形式得到一些恒等式是复数里经常出现的 ...
- MT【176】两两乘积
求$1,2\cdots,n$两两乘积的平均值____ 解答:$\dfrac{1}{C_n^2}\sum\limits_{1\le i<j\le n}{ij}=\dfrac{1}{n(n-1)}( ...
随机推荐
- MyEclipse和eclipse的区别
对于新手来说,MyEclipse和eclipse来说的区别可能就是MyEclipse比eclipse多了my,MyEclipse主要为JavaEE开发,而Eclipse主要为Java开发..那么MyE ...
- javascript与php与python的函数写法区别与联系
1.javascript函数写法种类: (一).第一种 function test(param){ return 111; } (二).第二种 var test = function(param){ ...
- ios 后台下载,断点续传总结
2018年12月05日 16:09:00 weixin_34101784 阅读数:5 https://blog.csdn.net/weixin_34101784/article/details/875 ...
- 关于iframe页面里的重定向问题
最近公司做的一个功能,使用了iframe,父页面内嵌子页面,里面的坑还挺多的,上次其实就遇到过,只不过今天在此描述一下. 请允许我画个草图: 外层大圈是父级页面,里层是子级页面,我们是在父级引用子级页 ...
- Linux下破解pycharm
1.下载 https://pan.baidu.com/s/119UO4SGIEW_cxf0LmZzx3w 并将 JetbrainsCrack-3.1-release-enc.jar 放置到 pycha ...
- yum 命令
yum( Yellow dog Updater, Modified)是一个在Fedora和RedHat以及SUSE中的Shell前端软件包管理器. 基於RPM包管理,能够从指定的服务器自动下载RPM包 ...
- C#复习笔记(3)--C#2:解决C#1的问题(实现迭代器的捷径)
实现迭代器的捷径 从这个题目上可以看到C#1实现一个迭代器模式的话是多么的痛苦,我自己也写过不下40行的代码来实现一个迭代器,C#中的迭代器模式是通过IEnumerable和他的泛型等价物IEnume ...
- maven eclipse 第3方包
C:\Users\3510\.m2\repository\myjar install:install-file -Dfile=C:\Users\3510\.m2\repository\myjar\al ...
- Linux bc 命令简单学习
1. bash里面能够实现比较简单的四则运算 echo $((*)) 注意是 双括号+ $ 地址符号. 2. 但是比较复杂的 可能就难以为继了 比如不支持精度 3. 所以这里面需要使用 bc 命令来执 ...
- Sqlserver tablediff的简单使用
1. 先列举一下自己简单的比较语句 tablediff -sourceserver 10.24.160.73 -sourcedatabase cwbasemi70 -sourceschema lcmi ...