A Simple Chess---hdu5794(容斥+Lucas)
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5794
题意:给你一个n*m的网格,问从(1, 1)走到(n, m)的方案数是多少,其中有r个点是不可到达的;
根据公式我们可以知道每次只能走”日"型;
路径如上图所示,我们可以看到有很多点是不可达的,可达点都是满足(x+y)%3=2的;路径可以看成一个斜着放置的杨辉三角。我们只需要把坐标转换一下即可,这是没有障碍时的方案数;
让(1,1)到(n,m)中如果有一个障碍,那么我们可以用起点到终点的方法数-起点到障碍点的方法数*障碍点到终点的方法数;同样如果有 r 个,那就减去r次这样的情况;
同样处理到达每个点的时候也是这样处理的;
注意有不可达的,所以判断一下不然会re的;
#include<iostream>
#include<algorithm>
#include<string.h>
#include<stdio.h>
#include<math.h>
using namespace std;
#define N 120000
#define PI 4*atan(1.0)
#define mod 110119
#define met(a, b) memset(a, b, sizeof(a))
typedef long long LL; struct node
{
LL x, y;
friend bool operator < (node p, node q)
{
if(p.x!=q.x)
return p.x < q.x;
return p.y < q.y;
}
}a[]; LL f[N] = {}; LL Pow(LL a, LL b)
{
LL ans = ;
while(b)
{
if(b&)
ans = ans*a%mod;
b/=;
a = a*a%mod;
}
return ans%mod;
} LL C(LL n, LL m)
{
if(m>n)return ;
if(m == )return ;
LL ans = f[n] * Pow(f[m], mod-)%mod * Pow(f[n-m], mod-) % mod;
return ans;
}
LL Lucas(LL n, LL m)
{
if(n< || m<)return ;///会出现不可达的情况,所以注意判断,否则会re;
if(m > n) return ;
if(m == ) return ;
return C(n%mod, m%mod) * Lucas(n/mod, m/mod) % mod;
} LL solve(LL x1, LL y1, LL x2, LL y2)
{
if((x1+y1)% != )return ;
if((x2+y2)% != )return ; LL ax = (x1+y1-)/;
LL ay = y1 - - ax; LL bx = (x2+y2-)/;
LL by = y2 - - bx; return Lucas(bx-ax, by-ay);
} int main()
{
for(int i=; i<=; i++)
f[i] = f[i-]*i % mod; LL n, m;
int t = , r;
while(scanf("%I64d %I64d %d", &n, &m, &r)!=EOF)
{
LL ans[N];///起点到i的方案数; for(int i=; i<=r; i++)
scanf("%I64d %I64d", &a[i].x, &a[i].y); sort(a+, a+r+);///按x的升序排列,再按y的升序排列; LL sum = solve(, , n, m); for(int i=; i<=r; i++)
{
ans[i] = solve(, , a[i].x, a[i].y);
for(int j=; j<i; j++)
{
ans[i] = ((ans[i] - ans[j]*solve(a[j].x, a[j].y, a[i].x, a[i].y)%mod) + mod) % mod;
}
}
for(int i=; i<=r; i++)
{
sum = (sum - ans[i]*solve(a[i].x, a[i].y, n, m)%mod + mod) % mod;
}
printf("Case #%d: %I64d\n", t++, sum);
}
return ;
}
A Simple Chess---hdu5794(容斥+Lucas)的更多相关文章
- HDU 5794 A Simple Chess (容斥+DP+Lucas)
A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...
- hdu5794 A Simple Chess 容斥+Lucas 从(1,1)开始出发,每一步从(x1,y1)到达(x2,y2)满足(x2−x1)^2+(y2−y1)^2=5, x2>x1,y2>y1; 其实就是走日字。而且是往(n,m)方向走的日字。还有r个障碍物,障碍物不可以到达。求(1,1)到(n,m)的路径条数。
A Simple Chess Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
- hdu-5794 A Simple Chess(容斥+lucas+dp)
题目链接: A Simple Chess Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Ot ...
- HDU5794 A Simple Chess 容斥+lucas
分析:转自http://blog.csdn.net/mengzhengnan/article/details/47031777 一点感想:其实这个题应该是可以想到的,但是赛场上并不会 dp[i]的定义 ...
- Codeforces Round #258 (Div. 2) 容斥+Lucas
题目链接: http://codeforces.com/problemset/problem/451/E E. Devu and Flowers time limit per test4 second ...
- hdu_5794_A Simple Chess(lucas+dp)
题目链接:hdu_5794_A Simple Chess 题意: 给你n,m,从(1,1)到(n,m),每次只能从左上到右下走日字路线,有k(<=100)的不能走的位置,问你有多少方案 题解: ...
- Luogu4640 BJWC2008 王之财宝 容斥、Lucas
传送门 题意:有$N$种物品,其中$T$个物品有限定数量$B_i$,其他则没有限定.问从中取出不超过$M$个物品的方案数,对质数$P$取模.$N,M \leq 10^9 , T \leq 15 , P ...
- HDU 5794 A Simple Chess dp+Lucas
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 A Simple Chess Time Limit: 2000/1000 MS (Java/O ...
- 【题解】CF559C C. Gerald and Giant Chess(容斥+格路问题)
[题解]CF559C C. Gerald and Giant Chess(容斥+格路问题) 55336399 Practice: Winlere 559C - 22 GNU C++11 Accepte ...
随机推荐
- RF失败案例重跑
1.1 失败案例重跑 该功能主要是针对上次连跑失败的案例需要重新执行测试的情况,可自动识别上次执行失败的案例并进行重跑,无需手动选择相应的案例,简单高效. 1.5.1. 重 ...
- java.util.concurrent.RejectedExecutionException 线程池饱和
java.util.concurrent.RejectedExecutionException at java.util.concurrent.ThreadPoolExecutor$AbortPoli ...
- 使用 Json 文件存储
将爬取到的数据以 Json 文件形式存储: import json import requests req = requests.get('http://www.baidu.com/') data = ...
- pom.xml文件错误
刚创建的maven项目,马上pom.xml的第一行就报错这是第一行:<project xmlns="http://maven.apache.org/POM/4.0.0" xm ...
- MongoDB安装问题以及启动
在安装MongoDB的文件中找到bin文件,其中有mongo.exe应用程序,双击打开会出现第二幅图的样子. 将MongoDB服务器作为Windows服务运行,运行后,不知道为什么无法启动,即使删除d ...
- open-falcon之dashboard\portal说明.md
dashboard 功能 为用户展示监控数据 配置文件 gunicorn.conf - workers,dashboard并发进程数 - bind,dashboard的http监听端口 - proc_ ...
- vs必备快捷键整理
.格式化代码:Ctrl+E,D .格式化部分代码:选中代码->Ctrl+K,F.或者Ctrl+E,F. .折叠cs文件所有方法:Ctrl+M,O .打开或折叠所有代码:Ctrl+M,L (打开或 ...
- 【python3】Mac下selenium3+chrome驱动+python3
环境: python3.6.4 seleinum3.11 事先准备好python3 环境.安装谷歌浏览器 1 安装seleinum pip3 install selenium 2 安装chrome ...
- 七、K3 WISE 开发插件《Update字段级更新触发器 - BOS单审核后反写源单》
审核成功触发,是一个比较典型的场景.需要用到update触发器,跟踪到审核状态的变化. 引用的源码<采购检验单审核后反写收料通知单>,其中采购检验单是BOS自定义单据. if (objec ...
- X-Requested-With导致CSRF失败
在漫漫渗透之路中,眼前一亮的发现一个站.Referer字段没有检查,POST参数中的动态token也没有检查,这不是带一波CSRF的节奏嘛.但是遇到一个之前我没遇到的问题导致我CSRF失败,这个问题或 ...