Cantor Set Theory 与 Cantor-Schröder-Bernstein Theory 是 Lebesgue积分及Real Analysis的Kernel。

证明过程有re-mapping two 1-1 relate into one bidirectional 1-1 mapping;

Proof of Cantor-Bernstein Theorem:

说明: \(g = f^{'}\) 表示 对 一对分别来自A与B的元素,有\(g\)与\(f\)互为反函数;

∵A = A0∪A1, B = B0∪B1, A 到 B0 有 1-1 的 \(f\) 映射, B 到 A0 有 1-1 的 \(g\) 映射;

∴ 又因为 A与B 是对称的,所以我们只要证明任一侧出发是成立的,则另一侧同理可证;

1.对给定的任意 \(a_1\)∈A1:

  • 存在1-1映射的正函数\(f\), 使 \(f(a_1) = b_1\) 且 \(b_1\) ∈B0, 成立;

  • 且有1-1映射的反函数$f^{'}, 使 \(f^{'} (b_1) = a_1\)成立;

  • 对此类A1集合的元素点, 存在与其对应的, 并由B0包含的子集B1与其1-1对应, 并且此时有 \(g = f^{'}\), 不然将破坏1-1映射的规则;

    2.因此对给定的 \(b_2\)∈B0: 有三种相互独立的cases:

  • 第一种case是 \(b_2\)∈B1, 即与任一A1元素1-1对应的:

  • 第二种case是对 \(b_2\), 存在 \(a_2\)∈A0,使得 \(g(b_2) = a_2\),

    并且此时 \(g = f^{'}\);

  • 第三种case是对 \(b_2\), 存在 \(a_2\)∈A0,使得 \(g(b_2) = a_2\),

    但是此时 \(g ≠ f^{'}\),因此必然要 存在 \(b_3\)∈B0,使得 \(f(a_2) = b_3\);

    ...

    经过n次这种 \(g ≠ f^{'}\) 类似光子反射;

    要么以 \(g ≠ f^{'}\) 进行无限次光子反射;

    要么以 \(g = f^{'}\) 达成稳定的1-1映射,并且\(g\)与\(f\)在最终的一对两点上,互为反函数;

  • 对给定的任意 \(b_2\)∈A1, 存在1-1映射\(f\)的像 \(b_1\) ∈B0, 使 \(f(a_1) = b_1\) 成立;
  1. RoyalSocietyPublishing.org: https://royalsocietypublishing.org/doi/10.1098/rsta.2018.0031
  2. Cornell: https://www.cs.cornell.edu/courses/cs2800/2017fa/lectures/lec14-cantor.html
  3. UCLA: https://we结束b.cs.ucla.edu/~palsberg/course/cs232/papers/bernstein.pdf
  4. https://artofproblemsolving.com/wiki/index.php/Schroeder-Bernstein_Theorem
  5. Whitman: https://www.whitman.edu/mathematics/higher_math_online/section04.09.html#:~:text=Theorem 4.9.1 (Schröder-Bernstein Theorem) If A ¯ ≤,B such that g (b 1) %3D a.
  6. Wliams: https://web.williams.edu/Mathematics/lg5/CanBer.pdf
  7. EncyclopediaOfMath.org: https://encyclopediaofmath.org/wiki/Schroeder–Bernstein_theorem

Schroeder-Bernstein Theorem

The Schroeder-Bernstein Theorem(sometimes called the Cantor-Schroeder-Bernstein Theorem)

is a result from set theory, named for Ernst Schröder and Felix Bernstein.

Informally, it implies that if two cardinalities are both less than or equal to each other, then they are equal.

More specifically, the theorem states that if \(A\) and \(B\) are sets, and there are injections \(f: A \to B\) and \(g : B \to A\), then there is a bijection \(h : A \to B\).

The proof of the theorem does not depend on the axiom of choice, but only on the classical Zermelo-Fraenkel axioms.

Contents

1 Proof

2 Problems

2.1 Introductory

2.1.1 Problem 1

2.1.2 Problem 2

2.2 Intermediate

2.2.1 Problem 1

3 See Also

Proof

We call an element \(b\) of \(B\) lonely if there is no element \(a \in A\) such that \(f(a) = b\). We say that an element \(b_1\) of \(B\) is a descendent of an element \(b_0\) of \(B\) if there is a natural number \(n\) (possibly zero) such that \(b_1 = (f \circ g)^n (b_0)\).

We define the function \(h: A \to B\) as follows: [h(a) = \begin{cases} g^{-1}(a), &\text{if } f(a) \text{ is the descendent of a lonely point,} \ f(a) &\text{otherwise.} \end{cases}] Note that \(f(a)\) cannot be lonely itself. If \(f(a)\) is the descendent of a lonely point, then \(f(a) = f \circ g (b)\) for some \(b\); since \(g\) is injective, the element \(g^{-1}(a)\) is well defined. Thus our function \(h\) is well defined. We claim that it is a bijection from \(A\) to \(B\).

We first prove that \(h\) is surjective. Indeed, if \(b \in B\) is the descendent of a lonely point, then \(h(g(b)) = b\); and if \(b\) is not the descendent of a lonely point, then \(b\) is not lonely, so there is some \(a \in A\) such that \(f(a) = b\); by our definition, then, \(h(a) = b\). Thus \(h\) is surjective.

Next, we prove that \(h\) is injective. We first note that for any \(a \in A\), the point \(h(a)\) is a descendent of a lonely point if and only if \(f(a)\) is a descendent of a lonely point. Now suppose that we have two elements \(a_1, a_2 \in A\) such that \(h(a_1) = h(a_2)\). We consider two cases.

If \(f(a_1)\) is the descendent of a lonely point, then so is \(f(a_2)\). Then \(g^{-1}(a_1) = h(a_1) = h(a_2) = g^{-1}(a_2)\). Since \(g\) is a well defined function, it follows that \(a_1 = a_2\).

On the other hand, if \(f(a_1)\) is not a descendent of a lonely point, then neither is \(f(a_2)\). It follows that \(f(a_1) = h(a_1) = h(a_2) = f(a_2)\). Since \(f\) is injective, \(a_1 = a_2\).

Thus \(h\) is injective. Since \(h\) is surjective and injective, it is bijective, as desired. \(\blacksquare\)

Problems

The Schroeder-Bernstein Theorem can be used to solve many cardinal arithmetic problems. For example, one may wish to show \(|S|=\kappa\) for some cardinal \(\kappa\). One strategy is to find sets \(A,B\) such that \(|A|=|B|=\kappa\) with injections from \(A\) to \(S\) and \(S\) to \(B\), thus concluding that \(|A|=|S|=|B|=\kappa\). More generally, the Schroeder-Bernstein Theorem shows that the relation \(|A|\leq|B|\) between cardinals \(|A|\) and \(|B|\) defined by "there is an injection \(f:A\rightarrow B\)" is a partial-order on the class of cardinals.

Introductory

Problem 1

Show that \(\mathbb{Q}\) is countable.

Problem 2

Let \(\kappa\) satisfy \(\kappa\cdot\kappa=\kappa\). Show that \(\kappa^{\kappa}=2^{\kappa}\).

Intermediate

Problem 1

We say a set of reals \(O\subseteq\mathbb{R}\) is open if for all \(r\in O\), there is an open interval \(I\) satisfying \(r\in I\subseteq O\). Show that the following sets are equal in cardinality:

\(\mathbb{R}\)

\(2^{\aleph_{0}}\)

\(\{O\subset\mathbb{R}\mid O\text{ is open}\}\)

\(\{f:\mathbb{R}\rightarrow\mathbb{R}\mid f\text{ is continuous}\}\)

See Also

Categories: Set theoryTheorems

SciTech-Mathmatics-RealAnalysis: Cantor-Schröder-Bernstein Theorem的更多相关文章

  1. 译注(2): How to Write a 21st Century Proof

    原文:Computer Scientist Tells Mathematicians How To Write Proofs 对比一下下面两个证明哪个更好? 版本一: "A square a ...

  2. Parseval's theorem 帕塞瓦尔定理

    Source: wiki: Parseval's theorem As for signal processing, the power within certain frequency band = ...

  3. 利用Cayley-Hamilton theorem 优化矩阵线性递推

    平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...

  4. Kernel Methods (6) The Representer Theorem

    The Representer Theorem, 表示定理. 给定: 非空样本空间: \(\chi\) \(m\)个样本:\(\{(x_1, y_1), \dots, (x_m, y_m)\}, x_ ...

  5. cantor三分集

    值得一提的是,第一次听说cantor三分集是在数字电路课上,然而数电是我最不喜欢的课程之一...... 分形大都具有自相似.自仿射性质,所以cantor三分集用递归再合适不过了,本来不想用matlab ...

  6. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  7. 洛谷 P1014 Cantor表 Label:续命模拟QAQ

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...

  8. [知识点]Cantor展开

    // 此博文为迁移而来,写于2015年3月14日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vtyo.html 1.含 ...

  9. 生成树的个数——基尔霍夫定理(Matrix-Tree Theorem)

    树有很多种形态,给定结点个数,求生成不同形态二叉树的个数,显然要用到Catalan数列. 那如果给定一个图(Graph)\(G=(V,E)\),要求其最小生成树G',最好的方法莫过于Prim或Krus ...

  10. uva 11178 - Morley's Theorem

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

随机推荐

  1. 信息资源管理文字题之“IT服务管理的理念以及ITIL管理体系中IT服务十大核心流程”

    一.阐述IT服务管理的理念以及ITIL(信息技术基础架构库)管理体系中IT服务十大核心流程 二.答案 答:IT服务管理的理念是:以流程为导向,以客户为中心 ITIL标准中归纳了两大类核心流程:服务支持 ...

  2. 【Elasticsearch】一文读懂ES向量搜索:原理剖析与技术全景

    大家好,我是大任,今天给大家分享一下Elasticsearch的向量搜索技术 注:本文若未说明ES版本则为7.10,其他版本会特别标记,由于ES版本不同,部分差异较大,具体请以官方文档为准 一.向量搜 ...

  3. SpringAI-RC1正式发布:移除千帆大模型!

    续 Spring AI M8 版本之后(5.1 发布),前几日 Spring AI 悄悄的发布了最新版 Spring AI 1.0.0 RC1(5.13 发布),此版本也将是 GA(Generally ...

  4. .NET中使用CommonOpenFileDialog【打开文件夹】

    install-package WindowsAPICodePack var folderDialog = new CommonOpenFileDialog() { Title = "xxx ...

  5. Data wrangling:Join,Combine,and Reshape,in Pandas

    Data wrangling:Join,Combine,and Reshape,in Pandas import pandas as pd import numpy as np Hierarchica ...

  6. java常用包的介绍

    java.* java.lang    包含Java程序所需要的基本类(默认导入) java.util         包含丰富的常用工具类,如集合框架.事件模式.日期时间等 java.math   ...

  7. 8086汇编(16位汇编)学习笔记05.asm基础语法和串操作

    https://bpsend.net/thread-121-1-2.html asm基础语法 1. 环境配置 xp环境配置 1.拷贝masm615到指定目录 2.将masm615目录添加进环境变量 3 ...

  8. IDEA 调试Java代码的两个技巧

      本文介绍两个使用IDEA 调试Java代码的两个技巧: 修改变量值 使用RuntimeException终止代码执行 修改变量值   在Java代码调试过程中,我们可以修改变量值,使其达到走指定分 ...

  9. EasyExcel工具类,可导出单个sheet、导出多个sheet

    单个sheet导出案例 ExcelUtil.exportXlsx(response, "测试数据", "测试数据", list, TestDataPageDto ...

  10. Java 锁升级机制详解

    Java 锁升级机制详解 引言 最近有个三年左右的兄弟面试java 被问到这样一道经典的八股文面试题: 你讲讲java里面的锁升级? 他感觉回答的不是很好,然后回去找资料学习了一波,然后下面是他输出的 ...