SciTech-Mathmatics-RealAnalysis: Cantor-Schröder-Bernstein Theorem
Cantor Set Theory 与 Cantor-Schröder-Bernstein Theory 是 Lebesgue积分及Real Analysis的Kernel。
证明过程有re-mapping two 1-1 relate into one bidirectional 1-1 mapping;
Proof of Cantor-Bernstein Theorem:
说明: \(g = f^{'}\) 表示 对 一对分别来自A与B的元素,有\(g\)与\(f\)互为反函数;
∵A = A0∪A1, B = B0∪B1, A 到 B0 有 1-1 的 \(f\) 映射, B 到 A0 有 1-1 的 \(g\) 映射;
∴ 又因为 A与B 是对称的,所以我们只要证明任一侧出发是成立的,则另一侧同理可证;
1.对给定的任意 \(a_1\)∈A1:
存在1-1映射的正函数\(f\), 使 \(f(a_1) = b_1\) 且 \(b_1\) ∈B0, 成立;
且有1-1映射的反函数$f^{'}, 使 \(f^{'} (b_1) = a_1\)成立;
对此类A1集合的元素点, 存在与其对应的, 并由B0包含的子集B1与其1-1对应, 并且此时有 \(g = f^{'}\), 不然将破坏1-1映射的规则;
2.因此对给定的 \(b_2\)∈B0: 有三种相互独立的cases:第一种case是 \(b_2\)∈B1, 即与任一A1元素1-1对应的:
第二种case是对 \(b_2\), 存在 \(a_2\)∈A0,使得 \(g(b_2) = a_2\),
并且此时 \(g = f^{'}\);第三种case是对 \(b_2\), 存在 \(a_2\)∈A0,使得 \(g(b_2) = a_2\),
但是此时 \(g ≠ f^{'}\),因此必然要 存在 \(b_3\)∈B0,使得 \(f(a_2) = b_3\);
...
经过n次这种 \(g ≠ f^{'}\) 类似光子反射;
要么以 \(g ≠ f^{'}\) 进行无限次光子反射;
要么以 \(g = f^{'}\) 达成稳定的1-1映射,并且\(g\)与\(f\)在最终的一对两点上,互为反函数;
- 对给定的任意 \(b_2\)∈A1, 存在1-1映射\(f\)的像 \(b_1\) ∈B0, 使 \(f(a_1) = b_1\) 成立;
- RoyalSocietyPublishing.org: https://royalsocietypublishing.org/doi/10.1098/rsta.2018.0031
- Cornell: https://www.cs.cornell.edu/courses/cs2800/2017fa/lectures/lec14-cantor.html
- UCLA: https://we结束b.cs.ucla.edu/~palsberg/course/cs232/papers/bernstein.pdf
- https://artofproblemsolving.com/wiki/index.php/Schroeder-Bernstein_Theorem
- Whitman: https://www.whitman.edu/mathematics/higher_math_online/section04.09.html#:~:text=Theorem 4.9.1 (Schröder-Bernstein Theorem) If A ¯ ≤,B such that g (b 1) %3D a.
- Wliams: https://web.williams.edu/Mathematics/lg5/CanBer.pdf
- EncyclopediaOfMath.org: https://encyclopediaofmath.org/wiki/Schroeder–Bernstein_theorem
Schroeder-Bernstein Theorem
The Schroeder-Bernstein Theorem(sometimes called the Cantor-Schroeder-Bernstein Theorem)
is a result from set theory, named for Ernst Schröder and Felix Bernstein.
Informally, it implies that if two cardinalities are both less than or equal to each other, then they are equal.
More specifically, the theorem states that if \(A\) and \(B\) are sets, and there are injections \(f: A \to B\) and \(g : B \to A\), then there is a bijection \(h : A \to B\).
The proof of the theorem does not depend on the axiom of choice, but only on the classical Zermelo-Fraenkel axioms.
Contents
1 Proof
2 Problems
2.1 Introductory
2.1.1 Problem 1
2.1.2 Problem 2
2.2 Intermediate
2.2.1 Problem 1
3 See Also
Proof
We call an element \(b\) of \(B\) lonely if there is no element \(a \in A\) such that \(f(a) = b\). We say that an element \(b_1\) of \(B\) is a descendent of an element \(b_0\) of \(B\) if there is a natural number \(n\) (possibly zero) such that \(b_1 = (f \circ g)^n (b_0)\).
We define the function \(h: A \to B\) as follows: [h(a) = \begin{cases} g^{-1}(a), &\text{if } f(a) \text{ is the descendent of a lonely point,} \ f(a) &\text{otherwise.} \end{cases}] Note that \(f(a)\) cannot be lonely itself. If \(f(a)\) is the descendent of a lonely point, then \(f(a) = f \circ g (b)\) for some \(b\); since \(g\) is injective, the element \(g^{-1}(a)\) is well defined. Thus our function \(h\) is well defined. We claim that it is a bijection from \(A\) to \(B\).
We first prove that \(h\) is surjective. Indeed, if \(b \in B\) is the descendent of a lonely point, then \(h(g(b)) = b\); and if \(b\) is not the descendent of a lonely point, then \(b\) is not lonely, so there is some \(a \in A\) such that \(f(a) = b\); by our definition, then, \(h(a) = b\). Thus \(h\) is surjective.
Next, we prove that \(h\) is injective. We first note that for any \(a \in A\), the point \(h(a)\) is a descendent of a lonely point if and only if \(f(a)\) is a descendent of a lonely point. Now suppose that we have two elements \(a_1, a_2 \in A\) such that \(h(a_1) = h(a_2)\). We consider two cases.
If \(f(a_1)\) is the descendent of a lonely point, then so is \(f(a_2)\). Then \(g^{-1}(a_1) = h(a_1) = h(a_2) = g^{-1}(a_2)\). Since \(g\) is a well defined function, it follows that \(a_1 = a_2\).
On the other hand, if \(f(a_1)\) is not a descendent of a lonely point, then neither is \(f(a_2)\). It follows that \(f(a_1) = h(a_1) = h(a_2) = f(a_2)\). Since \(f\) is injective, \(a_1 = a_2\).
Thus \(h\) is injective. Since \(h\) is surjective and injective, it is bijective, as desired. \(\blacksquare\)
Problems
The Schroeder-Bernstein Theorem can be used to solve many cardinal arithmetic problems. For example, one may wish to show \(|S|=\kappa\) for some cardinal \(\kappa\). One strategy is to find sets \(A,B\) such that \(|A|=|B|=\kappa\) with injections from \(A\) to \(S\) and \(S\) to \(B\), thus concluding that \(|A|=|S|=|B|=\kappa\). More generally, the Schroeder-Bernstein Theorem shows that the relation \(|A|\leq|B|\) between cardinals \(|A|\) and \(|B|\) defined by "there is an injection \(f:A\rightarrow B\)" is a partial-order on the class of cardinals.
Introductory
Problem 1
Show that \(\mathbb{Q}\) is countable.
Problem 2
Let \(\kappa\) satisfy \(\kappa\cdot\kappa=\kappa\). Show that \(\kappa^{\kappa}=2^{\kappa}\).
Intermediate
Problem 1
We say a set of reals \(O\subseteq\mathbb{R}\) is open if for all \(r\in O\), there is an open interval \(I\) satisfying \(r\in I\subseteq O\). Show that the following sets are equal in cardinality:
\(\mathbb{R}\)
\(2^{\aleph_{0}}\)
\(\{O\subset\mathbb{R}\mid O\text{ is open}\}\)
\(\{f:\mathbb{R}\rightarrow\mathbb{R}\mid f\text{ is continuous}\}\)
See Also
Categories: Set theoryTheorems
SciTech-Mathmatics-RealAnalysis: Cantor-Schröder-Bernstein Theorem的更多相关文章
- 译注(2): How to Write a 21st Century Proof
原文:Computer Scientist Tells Mathematicians How To Write Proofs 对比一下下面两个证明哪个更好? 版本一: "A square a ...
- Parseval's theorem 帕塞瓦尔定理
Source: wiki: Parseval's theorem As for signal processing, the power within certain frequency band = ...
- 利用Cayley-Hamilton theorem 优化矩阵线性递推
平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...
- Kernel Methods (6) The Representer Theorem
The Representer Theorem, 表示定理. 给定: 非空样本空间: \(\chi\) \(m\)个样本:\(\{(x_1, y_1), \dots, (x_m, y_m)\}, x_ ...
- cantor三分集
值得一提的是,第一次听说cantor三分集是在数字电路课上,然而数电是我最不喜欢的课程之一...... 分形大都具有自相似.自仿射性质,所以cantor三分集用递归再合适不过了,本来不想用matlab ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 洛谷 P1014 Cantor表 Label:续命模拟QAQ
题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...
- [知识点]Cantor展开
// 此博文为迁移而来,写于2015年3月14日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vtyo.html 1.含 ...
- 生成树的个数——基尔霍夫定理(Matrix-Tree Theorem)
树有很多种形态,给定结点个数,求生成不同形态二叉树的个数,显然要用到Catalan数列. 那如果给定一个图(Graph)\(G=(V,E)\),要求其最小生成树G',最好的方法莫过于Prim或Krus ...
- uva 11178 - Morley's Theorem
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
随机推荐
- FastJSON序列化扩展接口与特性详解
结论先行 FastJSON 的 SerializeFilter 接口通过 动态拦截和修改序列化过程,可实现字段名重命名.敏感数据脱敏.字段过滤等高级功能.其核心子接口包括 PropertyPreFil ...
- 企业级分布式MCP方案
飞书原文档链接地址:https://ik3te1knhq.feishu.cn/wiki/D8kSwC9tFi61CMkRdd8cMxNTnpg 企业级分布式 MCP 方案 背景:现阶段 MCP Cli ...
- Java Collection集合的基本操作
目录 Collection接口常用方法 存放String类型 存放自建对象 Collection和Collections的区别 Collection接口常用方法 int size();//集合大小 b ...
- 【记录】IDA和Ollydbg查看指令地址及地址对应的指令
文章目录 在IDA中查看指令地址 在Ollydbg中查看指令地址 在Ollydbg中查看地址对应的指令 在IDA中查看指令地址 在Ollydbg中查看指令地址 ollydbg在对应指令处,右键-查看- ...
- 【HUST】网安|软件安全课设|记录
仓库链接 clone之后点开html文件即可使用. 效果如下图: 文章目录 进程通信设计 共享内存(Windows) 初始化共享内存 修改和读取共享内存的内容 共享内存(linux) (尝试使用,但使 ...
- 【MOOC】华中科技大学计算机组成原理慕课答案-第四章-存储系统(二)
待整理. 单选 1 32位处理器的最大虚拟地址空间为 A. 2G B. 8G C. 16G √D. 4G 2 在虚存.内存之间进行地址变换时,功能部件 ( )将地址从虚拟(逻辑)地址空间映射到物理地址 ...
- P2150 [NOI2015] 寿司晚宴 题解
P2150 [NOI2015] 寿司晚宴 刚开始看错题了,推了一个与原题类似的 DP 方程,然后不会优化,笑了. 思路 首先看到 \(n\) 很小,然后质因子个数就更少了. 因此第一反应是将所有的质因 ...
- .NET周刊【5月第1期 2025-05-04】
dotnet 9 通过 AppHostRelativeDotNet 指定自定义的运行时路径 https://www.cnblogs.com/lindexi/p/18847625 这篇文章讨论了在 .N ...
- SpringBoot3 使用 SolonMCP 开发 MCP
之前发了个 "<SpringBoot2 可以使用 SolonMCP 开发 MCP(江湖救急)>".然后,有人问:SpringBoot3 能不能用 SolonMCP? 其 ...
- STL vector容器存储键值对
在阅读tvm源码时,发现了一个挺有意思的代码: std::vector<std::pair<std::string, ObjectRef>> update; vector容器里 ...