1、Normal distribution

In probability theory, the normal (or Gaussian or Gauss or Laplace–Gauss) distribution is a very common continuous probability distribution. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. A random variable with a Gaussian distribution is said to be normally distributed and is called a normal deviate.
The normal distribution is
useful because of the central limit theorem. In its most general form, under
some conditions (which include finite variance), it states that averages of
samples of observations of random variables independently drawn from
independent distributions converge in distribution to the normal, that is, they
become normally distributed when the number of observations is sufficiently
large. Physical quantities that are expected to be the sum of many independent
processes (such as measurement errors) often have distributions that are nearly
normal. Moreover, many results and methods (such as propagation of uncertainty
and least squares parameter fitting) can be derived analytically in explicit
form when the relevant variables are normally distributed.
The normal distribution is
sometimes informally called the bell curve. However, many other distributions
are bell-shaped (such as the Cauchy, Student's t-, and logistic distributions).

link:https://en.wikipedia.org/wiki/Normal_distribution

https://www.mathsisfun.com/data/standard-normal-distribution.html

2、Poisson Distribution

In
probability theory and statistics, the Poisson distribution (French
pronunciation: ​; in English often rendered /ˈpwɑːsɒn/), named after French
mathematician Siméon Denis Poisson, is a discrete probability distribution that
expresses the probability of a given number of events occurring in a fixed
interval of time or space if these events occur with a known constant rate and
independently of the time since the last event. The Poisson distribution can
also be used for the number of events in other specified intervals such as
distance, area or volume.
For instance, an
individual keeping track of the amount of mail they receive each day may notice
that they receive an average number of 4 letters per day. If receiving any
particular piece of mail does not affect the arrival times of future pieces of
mail, i.e., if pieces of mail from a wide range of sources arrive independently
of one another, then a reasonable assumption is that the number of pieces of
mail received in a day obeys a Poisson distribution. Other examples that may
follow a Poisson distribution include the number of phone calls received by a
call center per hour and the number of decay events per second from a
radioactive source.

link:https://en.wikipedia.org/wiki/Poisson_distribution

https://www.umass.edu/wsp/resources/poisson/

3、Chi-squared distribution

In
probability theory and statistics, the chi-square distribution (also
chi-squared or χ2-distribution) with k degrees of freedom is the distribution
of a sum of the squares of k independent standard normal random variables. The
chi-square distribution is a special case of the gamma distribution and is one
of the most widely used probability distributions in inferential statistics,
notably in hypothesis testing or in construction of confidence intervals. When
it is being distinguished from the more general noncentral chi-square distribution,
this distribution is sometimes called the central chi-square distribution.
The chi-square
distribution is used in the common chi-square tests for goodness of fit of an
observed distribution to a theoretical one, the independence of two criteria of
classification of qualitative data, and in confidence interval estimation for a
population standard deviation of a normal distribution from a sample standard
deviation. Many other statistical tests also use this distribution, such as
Friedman's analysis of variance by ranks.

link:https://en.wikipedia.org/wiki/Chi-squared_distribution

http://mathworld.wolfram.com/Chi-SquaredDistribution.html

https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.html

4、Beta distribution

In
probability theory and statistics, the beta distribution is a family of
continuous probability distributions defined on the interval  parametrized by two positive shape parameters,
denoted by α and β, that appear as exponents of the random variable and control
the shape of the distribution. It is a special case of the Dirichlet
distribution.
The beta distribution has
been applied to model the behavior of random variables limited to intervals of
finite length in a wide variety of disciplines.
In Bayesian inference, the
beta distribution is the conjugate prior probability distribution for the
Bernoulli, binomial, negative binomial and geometric distributions. For
example, the beta distribution can be used in Bayesian analysis to describe
initial knowledge concerning probability of success such as the probability
that a space vehicle will successfully complete a specified mission. The beta
distribution is a suitable model for the random behavior of percentages and proportions.
The usual formulation of
the beta distribution is also known as the beta distribution of the first kind,
whereas beta distribution of the second kind is an alternative name for the
beta prime distribution.

link:https://en.wikipedia.org/wiki/Beta_distribution

Statistics : Data Distribution的更多相关文章

  1. 异常:Data = 由于代码已经过优化或者本机框架位于调用堆栈之上,无法计算表达式的值。

    做项目的时候,将DataTable序列化成Json,通过ashx向前台返回数据的时候,前台总是获取不到数据,但是程序运行却没问题, 没抛出异常.一时找不到办法,减小输出的数据量,这时前台可以接收到页面 ...

  2. lombok插件:Data自动get/set方法, Slf4j实现Logger的调用

    lombok插件:Data自动get/set方法, Slf4j实现Logger的调用 lombok.Data import lombok.Data; import org.hibernate.anno ...

  3. 插入图片新方式:data:image

    我们在使用<img>标签和给元素添加背景图片时,不一定要使用外部的图片地址,也可以直接把图片数据定义在页面上.对于一些“小”的数据,可以在网页中直接嵌入,而不是从外部文件载入. 如何使用 ...

  4. EnjoyingSoft之Mule ESB开发教程第六篇:Data Transform - 数据转换

    目录 1. 数据转换概念 2. 数据智能感知 - DataSense 3. 简单数据转换组件 3.1 Object to JSON 3.2 JSON to XML 3.3 JSON to Object ...

  5. Logstash:Data转换,分析,提取,丰富及核心操作

    Logstash:Data转换,分析,提取,丰富及核心操作 Logstash plugins Logstash是一个非常容易进行扩张的框架.它可以对各种的数据进行分析处理.这依赖于目前提供的超过200 ...

  6. Mysql load data infile 导入数据出现:Data truncated for column

    [1]Mysql load data infile 导入数据出现:Data truncated for column .... 可能原因分析: (1)数据库表对应字段类型长度不够或修改为其他数据类型( ...

  7. 错误记录:Data too long for column 'xxx' at row 1

    错误记录:Data too long for column 'xxx' at row 1 使用Flask-sqlalchemy操作数据时报错: "Data too long for colu ...

  8. Generative Modeling by Estimating Gradients of the Data Distribution

    目录 概 主要内容 Langevin dynamics Score Matching Denoising Score Matching Noise Conditional Score Networks ...

  9. C# UTF8的BOM导致XML序列化与反序列化报错:Data at the root level is invalid. Line 1, position 1.

    最近在写一个xml序列化及反序列化实现时碰到个问题,大致类似下面的代码: class Program { static void Main1(string[] args) { var test = n ...

随机推荐

  1. mysql update获取主键

    mysql update获取主键<pre>SET @update_id := 0;UPDATE mobantestinfo1 SET info2 = 'value', id = (SELE ...

  2. Scss的使用场景

    一.Scss 1.CSS有几个缺点 语法不够强大,没有变量和合理的样式复用机制 使得逻辑上相关的属性值必须以字面的形式重复输出,难以维护 动态的样式语言为css富裕了动态语言的特性 极大的提高了样式语 ...

  3. HTML创建图像映射,布局,表单

    来源: 实验楼 创建图像映射 在这之前我们动手试验过将图片作为链接来使用,触发链接的方式就是点击图片的任何地方都可以链接到跳转地址,有时我们需要实现,点击图片的不同地方跳转到不同的地方.意思就是,一张 ...

  4. java中的线程安全

    在Java中,线程的安全实际上指的是内存的安全,这是由操作系统决定的. 目前主流的操作系统都是多任务的,即多个进程同时运行.为了保证安全,每个进程只能访问分配给自己的内存空间,而不能访问别的.分配给别 ...

  5. arduino体感控制简单版

    https://learn.sparkfun.com/tutorials/apds-9960-rgb-and-gesture-sensor-hookup-guide/all 硬件连线 关键 VCC=  ...

  6. MyBatis两种传参方式的区别

    $与#的区别 select * from T_PRINT_LAYOUT where D_RECID = ${recId} 最后生成的SQL为: select * from T_PRINT_LAYOUT ...

  7. PHP 面试踩过的坑

    1.get,post 的区别 **显示有区别 ** get方法是将字符串拼接在地址栏后面可以看见 而post方法看不见 **传递的大小有区别 ** 具体大小和浏览器有关系,ie浏览器是2k其他浏览器的 ...

  8. 文件系统类型(ext4、xfs、fat32、vfat、ntfs、....)

    Linux 1.Linux:存在几十个文件系统类型:ext2,ext3,ext4,xfs,brtfs,zfs(man 5 fs可以取得全部文件系统的介绍) 不同文件系统采用不同的方法来管理磁盘空间,各 ...

  9. Python 之路 Day01 笔记-什么是变量,常量等

    变量 变量 是 为了存储 程序运算过程中的一些中间 结果,为了方便日后调用 变量的命名规则 1. 要具有描述性 2. 变量名只能'_','数字','字母'组成,不可以是空格或特殊字符(#?<., ...

  10. python描述:链表

    单链表结构: 链表是一种物理存储单元上非连续.非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的.链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成.每个结点 ...