原文链接:https://www.cnblogs.com/gczr/p/9156971.html

一、简介

孤立森林(Isolation Forest)是另外一种高效的异常检测算法,它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或者基尼指数来选择。在建树过程中,如果一些样本很快就到达了叶子节点(即叶子到根的距离d很短),那么就被认为很有可能是异常点。

具体步骤:

Forest 由t个iTree(Isolation Tree)孤立树 组成,每个iTree是一个二叉树结构,其实现步骤如下:

1. 从训练数据中随机选择Ψ个点样本点作为subsample,放入树的根节点。

2. 随机指定一个维度(attribute),在当前节点数据中随机产生一个切割点p——切割点产生于当前节点数据中指定维度的最大值和最小值之间。

3. 以此切割点生成了一个超平面,然后将当前节点数据空间划分为2个子空间:把指定维度里小于p的数据放在当前节点的左孩子,把大于等于p的数据放在当前节点的右孩子。

4. 在孩子节点中递归步骤2和3,不断构造新的孩子节点,直到 孩子节点中只有一个数据(无法再继续切割) 或 孩子节点已到达限定高度 。

获得t个iTree之后,iForest 训练就结束,然后我们可以用生成的iForest来评估测试数据了。对于一个训练数据x,我们令其遍历每一棵iTree,然后计算x最终落在每个树第几层(x在树的高度)。就可以得出x在森林中的高度平均值,即 the average path length over t iTrees。*值得注意的是,如果x落在一个节点中含多个训练数据,可以使用一个公式来修正x的高度计算,详细公式推导见原论文

获得每个测试数据的average path length后,我们可以设置一个阈值(边界值),average path length 低于此阈值的测试数据即为异常。也就是说 “iForest identifies anomalies as instances having the shortest average path lengths in a dataset ”(异常在这些树中只有很短的平均高度). *值得注意的是,论文中对树的高度做了归一化,并得出一个0到1的数值,即越短的高度越接近1(异常的可能性越高)。

为什么距离d很短就认为是异常点呢?

比如一个维度里有1,2,3,4,5,100,从当前维度的最大值和最小值之间随机选择一个值作为切分点,假如是50,那么大于50的分在右子树,小于50的分在左子树,最终分成了两组,【1,2,3,4,5】和【100】,而在【100】这个样本组里,因为只有一个样本点了,所以不再划分了,高度就是1了,所以距离很短。

二、代码实现

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForest
from scipy import stats
rng = np.random.RandomState(42)
n_samples=6 #样本总数
# fit the model
clf = IsolationForest(max_samples=n_samples, random_state=rng, contamination=0.33) #contamination为异常样本比例
clf.fit(df.values)
scores_pred = clf.decision_function(df.values)
print(scores_pred)
print(len(scores_pred))
threshold = stats.scoreatpercentile(scores_pred, 100 * outliers_fraction)
结果:[ 0.11573485  0.12433055  0.13780741  0.12351238  0.06556263 -0.05915569]
clf.predict(df.values)
array([ 1,  1,  1,  1, -1, -1])
三、测试

predict(X)

          返回值:+1 表示正常样本, -1表示异常样本。
decision_function(X)

          返回样本的异常评分。 值越小表示越有可能是异常样本。
test=[[2,4,50,3,5,69,8]]
clf.decision_function(test)
输出:
array([0.08241789])
clf.predict(df.values)
输出:
array([ 1,  1,  1,  1, -1, -1])

四、算法应用

Isolation Forest 算法主要有两个参数:一个是二叉树的个数;另一个是训练单棵 iTree 时候抽取样本的数目。实验表明,当设定为 100 棵树,每棵树高度不超过8,抽样样本数为 256 条时候,IF 在大多数情况下就已经可以取得不错的效果。这也体现了算法的简单、高效。

Isolation Forest 是无监督的异常检测算法,在实际应用时,并不需要黑白标签。需要注意的是:(1)如果训练样本中异常样本的比例比较高,违背了先前提到的异常检测的基本假设,可能最终的效果会受影响;(2)异常检测跟具体的应用场景紧密相关,算法检测出的“异常”不一定是我们实际想要的。比如,在识别虚假交易时,异常的交易未必就是虚假的交易。所以,在特征选择时,可能需要过滤不太相关的特征,以免识别出一些不太相关的“异常”。

五、IF特点

1. iForest具有线性时间复杂度。因为是ensemble的方法,所以可以用在含有海量数据的数据集上面。通常树的数量越多,算法越稳定。由于每棵树都是互相独立生成的,因此可以部署在大规模分布式系统上来加速运算。

2. iForest不适用于特别高维的数据。由于每次切数据空间都是随机选取一个维度,建完树后仍然有大量的维度信息没有被使用,导致算法可靠性降低。高维空间还可能存在大量噪音维度或无关维度(irrelevant attributes),影响树的构建。对这类数据,建议使用子空间异常检测(Subspace Anomaly Detection)技术。此外,切割平面默认是axis-parallel的,也可以随机生成各种角度的切割平面,详见“On Detecting Clustered Anomalies Using SCiForest”。

3. iForest仅对Global Anomaly 敏感,即全局稀疏点敏感,不擅长处理局部的相对稀疏点 (Local Anomaly)。目前已有改进方法发表于PAKDD,详见“Improving iForest with Relative Mass”。

4. iForest推动了重心估计(Mass Estimation)理论发展,目前在分类聚类和异常检测中都取得显著效果,发表于各大顶级数据挖掘会议和期刊(如SIGKDD,ICDM,ECML)。

参考链接:https://www.jianshu.com/p/5af3c66e0410

 

(转)isolation forest进行异常点检测的更多相关文章

  1. isolation forest进行异常点检测

    一.简介 孤立森林(Isolation Forest)是另外一种高效的异常检测算法,它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或者基尼指数来选择.在建树过程中, ...

  2. [置顶] Isolation Forest算法原理详解

    本文只介绍原论文中的 Isolation Forest 孤立点检测算法的原理,实际的代码实现详解请参照我的另一篇博客:Isolation Forest算法实现详解. 或者读者可以到我的GitHub上去 ...

  3. Python机器学习笔记 异常点检测算法——Isolation Forest

    Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法.可能大家都习惯用其英文的名字isolat ...

  4. [转]Python机器学习笔记 异常点检测算法——Isolation Forest

    Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法.可能大家都习惯用其英文的名字isolat ...

  5. 异常检测算法--Isolation Forest

    南大周志华老师在2010年提出一个异常检测算法Isolation Forest,在工业界很实用,算法效果好,时间效率高,能有效处理高维数据和海量数据,这里对这个算法进行简要总结. iTree 提到森林 ...

  6. 异常检测算法:Isolation Forest

    iForest (Isolation Forest)是由Liu et al. [1] 提出来的基于二叉树的ensemble异常检测算法,具有效果好.训练快(线性复杂度)等特点. 1. 前言 iFore ...

  7. 【异常检测】孤立森林(Isolation Forest)算法简介

    简介 工作的过程中经常会遇到这样一个问题,在构建模型训练数据时,我们很难保证训练数据的纯净度,数据中往往会参杂很多被错误标记噪声数据,而数据的质量决定了最终模型性能的好坏.如果进行人工二次标记,成本会 ...

  8. 【异常检测】Isolation forest 的spark 分布式实现

    1.算法简介 算法的原始论文 http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf .python的sklearn中已经实现 ...

  9. 孤立森林(Isolation Forest)

    前言随着机器学习近年来的流行,尤其是深度学习的火热.机器学习算法在很多领域的应用越来越普遍.最近,我在一家广告公司做广告点击反作弊算法研究工作.想到了异常检测算法,并且上网调研发现有一个算法非常火爆, ...

随机推荐

  1. 《Java练习题》进阶练习题(二)

    编程合集: https://www.cnblogs.com/jssj/p/12002760.html 前言:不仅仅要实现,更要提升性能,精益求精,用尽量少的时间复杂度和空间复杂度解决问题. [程序58 ...

  2. Sqlite—Python接口

    #!/usr/bin/env python # -*- coding:utf-8 -*- import sqlite3,os,time import traceback class Sqlite(): ...

  3. 3.Redux学习3----redux-saga

    redux-saga和redux-thunk功能差不多,都是为了避免直接在组件生命周期函数中做异步操作,便于自动化测试,便于拆分管理. 首先要下包 npm i redux-saga 第零步:在acti ...

  4. IT兄弟连 HTML5教程 W3C盒子模型

    日常生活中所见的盒子也就是能装东西的一种箱子,如果家里的东西很多,那么就需要按类别装到不同的箱子中.网页中的内容表现也是一样的,如果页面内容比较多,又想让页面更整洁.更美观.有很好的用户体验,则也需要 ...

  5. Java之JDK配置

    目录 JDK配置 进入配置界面 配置JAVA_HOME 配置Path 配置CLASSPATH 查看是否成功 JDK配置 系统重装,由于要设置各种环境变量,怕之后还会遇到这个情况,特此记录一下. 前提: ...

  6. Python高级特性——生成器(generator)

    通过上节的学习,我们知道使用列表生成式,可以直接创建一个列表.但是,有些时候,受到内存的限制等实际情况,列表生成式无法满足.比如,一个长度为1000万的列表,普通内存根本就不够,又或者实际处理的过程中 ...

  7. Docker Compose 基本使用

    Dockercompose v3官网文档:  https://docs.docker.com/compose/compose-file/   Dockercompose中文: http://www.d ...

  8. centos 下安装rabbitmq

    1.先安装下依赖环境 yum install gcc glibc-devel make ncurses-devel openssl-devel xmlto 2.到earlang 官网下载erlang包 ...

  9. 程序结构设计理论(Android)

    程序结构设计理论(Android) 作者:邓能财 2019年9月24日 个人简介 姓名:邓能财 年龄:26 毕业学校:东华理工大学 院系:理学院 专业:信息与计算科学 邮箱:2420987186@qq ...

  10. 如何使ElementUi中的el-dropdown传入多参数

    这边因为业务的需求,觉得随着产品中心以后需要按钮的增多(图1操作栏的效果),这样会导致排版和按钮过于冗长的问题,用户体验不佳,于是想到利用el-dropdown做一个下拉按钮(图1操作1栏的效果) . ...