The pH scale measures the concentration of protons (H +) in a solution and, therefore, its acidity or alkalinity. The pH value of a solution is a number between 0 and 14; it is less than 7 if the solution is acidic, greater than 7 if the solution is basic, and 7 if it is neutral.

The formula for calculating pH is

pH = -log
10 [H
+]

where [H
+] is the concentration of protons measured in moles per litre.

To calculate the pH value of an acid, one has to determine
the concentration of protons in the solution. When an acid is dissolved
in water, an equilibrium is reached and is governed by the equation

K
a = [H
+] [acid ions] / [acid]

where K
a is the acidity constant (known for each acid), [acid
ions] is the concentration of the acid ions that have dissolved, and
[acid] is the concentration of the undissolved acid. Before the acid is
added, both [H
+] and [acid ions] are assumed to be 0.

For example, the acidity constant of methanoic acid is 1.6 * 10
-4. Dissolving one mole of acid molecules results in one mole of H
+ and one mole of acid ions. If the initial
concentration of the methanoic acid is 0.1 moles/L and x moles of acid
are dissolved (per liter), then the final concentration at equilibrium
would be 0.1 - x moles/L for the acid and x moles/L for H
+ and the acid ions.

Input

The input consists of a number of test cases. Each test case
contains 4 numbers on a line: two positive floating-point numbers
specifying the acidity constant K
a and the original concentration of the acid (in
moles/liter) added to the water, as well as two positive integers m and n
indicating that each mole of acid molecules is dissolved into m moles
of H
+ ions and n moles of acid ions. The floating-point
numbers are specified in scientific notation as shown below. The input
is terminated with a line containing four zeros.

Output

For each test case, print on a line the pH value of the solution, rounded to 3 decimal places.

Sample Input

1.6e-04 1.0e-01 1 1
1.6e-04 1.0e-01 4 1
1.5e-05 5.0e-02 1 2
0 0 0 0

Sample Output

2.407
2.101
3.216 OJ-ID:
POJ-2006 author:
Caution_X date of submission:
20190929 tags:
卡常的水题 description modelling:
给定电离平衡常数Ka,溶液未电离时的浓度C,1mol 酸的氢含量n和酸根含量m major steps to solve it:
    常规化学题的推导:设[H+]=x,[酸根]=y,则Ka=x*y/(C-y),x/y=n/m.
    记Ka=a,C=b,解得:ans=(-log10((-a+sqrt(a*a+(4.0*a*b*n*m)))/(2.0*m))). warnings:
sqrt(n/m)会导致精度不足,用sqrt(n*m)/m来替代则AC AC CODE:
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstdio>
using namespace std;
int main()
{
//freopen("input.txt","r",stdin);
double a,b;
int n,m;
while(~scanf("%lf%lf%d%d",&a,&b,&n,&m)&&a&&b&&n&&m)
{
cout<<setprecision()<<fixed<<(-log10((-a+sqrt(a*a+(4.0*a*b*n*m)))/(2.0*m)))<<endl;
}
return ;
}

POJ-2006 Litmus Test 高精度的更多相关文章

  1. POJ 2006:Litmus Test 化学公式

    Litmus Test Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 1709   Accepted: 897 Descri ...

  2. poj 1503 Integer Inquiry (高精度运算)

    题目链接:http://poj.org/problem?id=1503 思路分析: 基本的高精度问题,使用字符数组存储然后处理即可. 代码如下: #include <iostream> # ...

  3. POJ 2084 Catalan数+高精度

    POJ 2084 /**************************************** * author : Grant Yuan * time : 2014/10/19 15:42 * ...

  4. 解方程求PH值,POJ(2006)

    题目链接:http://poj.org/problem?id=2006 解题报告: 题意看了半天,没看懂,再加上化学没学好,更加让我头痛. 假设1L溶解了x摩尔的酸:ka=m*x*nx/ori-x; ...

  5. POJ 1001 解题报告 高精度大整数乘法模版

    题目是POJ1001 Exponentiation  虽然是小数的幂 最终还是转化为大整数的乘法 这道题要考虑的边界情况比较多 做这道题的时候,我分析了 网上的两个解题报告,发现都有错误,说明OJ对于 ...

  6. 【POJ 1001】Exponentiation (高精度乘法+快速幂)

    BUPT2017 wintertraining(15) #6A 题意 求\(R^n\) ( 0.0 < R < 99.999 )(0 < n <= 25) 题解 将R用字符串读 ...

  7. POJ 1625 Censored!(AC自动机+DP+高精度)

    Censored! Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 6956   Accepted: 1887 Descrip ...

  8. POJ 3181 Dollar Dayz(高精度 动态规划)

    题目链接:http://poj.org/problem?id=3181 题目大意:用1,2...K元的硬币,凑成N元的方案数. Sample Input 5 3 Sample Output 5 分析: ...

  9. poj 2773 Happy 2006 - 二分答案 - 容斥原理

    Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11161   Accepted: 3893 Description Two ...

随机推荐

  1. Bootstrap --------- 了解与使用

    Bootstrap是用来做什么的?有几大部分?谁开发的?有什么特点? 一个用于快速开发 Web 应用程序和网站的前端框架. 基于 HTML.CSS.JAVASCRIPT 的. 2011 年八月在 Gi ...

  2. LINUX CFS 调度tick逻辑,即check_preemt_tick解析

    计算当前task在这个tick周期实际用时delta_exetime, 更新当前task的vruntime; 根据权重,重新计算调度period,计算当前task的应得时间片slice(idle_ru ...

  3. 配置sshd的免密码登录

    在客户端上生成密钥: ssh-keygen -t rsa 然后上传到服务器上即可: ssh-copy-id username@remote-server -p22

  4. 给 K8s API “做减法”:阿里巴巴云原生应用管理的挑战和实践

    作者 | 孙健波(天元)  阿里巴巴技术专家本文整理自 11 月 21 日社群分享,每月 2 场高质量分享,点击加入社群. 早在 2011 年,阿里巴巴内部便开始了应用容器化,当时最开始是基于 LXC ...

  5. .net core 中使用 openssl 公钥私钥进行加解密

    这篇博文分享的是 C#中使用OpenSSL的公钥加密/私钥解密 一文中的解决方法在 .net core 中的改进.之前的博文针对的是 .NET Framework ,加解密用的是 RSACryptoS ...

  6. Spring Cloud中Hystrix 线程隔离导致ThreadLocal数据丢失问题分析

    最近spring boot项目中由于使用了spring cloud 的hystrix 导致了threadLocal中数据丢失,其实具体也没有使用hystrix,但是显示的把他打开了,导致了此问题. 导 ...

  7. java基础(29):JDBC、DBUtils

    1. JDBC 1.1 JDBC概述 JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问 ...

  8. 利用Python突破验证码限制

    一.实验说明 本实验将通过一个简单的例子来讲解破解验证码的原理,将学习和实践以下知识点: Python基本知识 PIL模块的使用 二.实验内容 安装 pillow(PIL)库: $ sudo apt- ...

  9. 深入理解AbstractQueuedSynchronizer(AQS)

    本人免费整理了Java高级资料,涵盖了Java.Redis.MongoDB.MySQL.Zookeeper.Spring Cloud.Dubbo高并发分布式等教程,一共30G,需要自己领取.传送门:h ...

  10. python web框架Django——ORM

    ORM简介 MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库 ORM是“对象-关系-映射”的简称 ...