BZOJ2194: 快速傅立叶之二(NTT,卷积)
Time Limit: 10 Sec Memory Limit: 259 MB
Submit: 1776 Solved: 1055
[Submit][Status][Discuss]
Description
请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5。 a,b中的元素均为小于等于100的非负整数。
Input
Output
输出N行,每行一个整数,第i行输出C[i-1]。
Sample Input
3 1
2 4
1 1
2 4
1 4
Sample Output
12
10
6
1
HINT
Source
题目中给的公式不好搞
我们按照套路,将$B$翻转一下
$$C(k) = \sum_0^n a_i * b_{n - 1 - i + k}$$
此时后面的式子就只与$k$有关了
设$$D(n - 1 + k) = \sum_0^n a_i * b_{n - 1 - i + k}$$
直接NTT
#include<cstdio>
#define swap(x,y) x ^= y, y ^= x, x ^= y
#define LL long long
using namespace std;
const int MAXN = * 1e5 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '',c = getchar();
return x * f;
}
const int P = , g = , gi = ;
int N;
int
LL a[MAXN], b[MAXN], r[MAXN];
LL fastpow(LL a, int p, int mod) {
LL base = ;
while(p) {
if(p & ) base = (base * a) % mod;
a = (a * a) % mod; p >>= ;
}
return base % mod;
}
LL NTT(LL *A, int type, int N, int mod) {
for(int i = ; i < N; i++)
if(i < r[i]) swap(A[i], A[r[i]]);
for(int mid = ; mid < N; mid <<= ) {
LL W = fastpow( (type == ) ? g : gi, (P - ) / (mid << ), mod );
for(int j = ; j < N; j += (mid << )) {
int w = ;
for(int k = ; k < mid; k++, w = (w * W) % P) {
LL x = A[j + k] % P, y = w * A[j + k + mid] % P;
A[j + k] = (x + y) % P;
A[j + k + mid] = (x - y + P) % P;
}
}
}
if(type == -) {
LL inv = fastpow(N, mod - , mod);
for(int i = ; i < N; i++)
A[i] = (A[i] * inv) % mod;
}
}
int main() {
#ifdef WIN32
freopen("a.in","r",stdin);
#endif
N = read();
for(int i = ; i < N; i++)
a[i] = read(), b[N - i] = read();
int limit = , L = ;
while(limit <= N + N) limit <<=, L++;
for(int i = ; i < limit; i++) r[i] = (r[i >> ] >> ) | ((i & ) << (L - ));
NTT(a, , limit, P); NTT(b, , limit, P);
for(int i = ; i < limit; i++) a[i] = (a[i] * b[i]) % P;
NTT(a, -, limit, P);
for(int i = ; i < N * ; i++)
printf("%d\n",a[i] % P);
return ;
}
BZOJ2194: 快速傅立叶之二(NTT,卷积)的更多相关文章
- bzoj2194 快速傅立叶之二 ntt
bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...
- BZOJ2194: 快速傅立叶之二 FFT_卷积
Code: #include <cstdio> #include <algorithm> #include <cmath> #include <cstring ...
- [bzoj2194]快速傅立叶之二_FFT
快速傅立叶之二 bzoj-2194 题目大意:给定两个长度为$n$的序列$a$和$b$.求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i} ...
- bzoj2194: 快速傅立叶之二
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- bzoj千题计划256:bzoj2194: 快速傅立叶之二
http://www.lydsy.com/JudgeOnline/problem.php?id=2194 相乘两项的下标 的 差相同 那么把某一个反过来就是卷积形式 fft优化 #include< ...
- BZOJ.2194.快速傅立叶之二(FFT 卷积)
题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...
- BZOJ2194:快速傅立叶之二(FFT)
Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...
- BZOJ2194 快速傅立叶之二 【fft】
题目 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非负整数. 输入格式 ...
- 2018.11.18 bzoj2194: 快速傅立叶之二(fft)
传送门 模板题. 将bbb序列反过来然后上fftfftfft搞定. 代码: #include<bits/stdc++.h> #define ri register int using na ...
随机推荐
- C#防止WebBrowser在新窗口中打开链接页面
在日常的开发中,大家有时需要用WebBrowser加载URL,来实现某些功能.而这时,我们就不希望所打开的页面中的链接,在新窗口中打开,因为这样的话,实际上是用系统默认的浏览器打开了,从而脱离了你的W ...
- 分享一个oracle 完整备份的批处理文件
该批处理是基本可以无限针对使用window 服务器的oracle 备份,如下: set mydate=%DATE:~0,10% exp e_cards2016/e_cards2016@orcl ful ...
- View的setTag和getTag方法
---恢复内容开始--- public View getView(int position, View convertView, ViewGroup parent) { Msg msg =getIte ...
- Eclips 快捷键设置
- Storm一个executor里运行多个task是为了rebalance
默认情况下下,一个executor运行一个component,即一个task,但有时会指定多个task: 1 builder.setBolt("", new XxBolt()).s ...
- 在Linux上利用core dump和GDB调试
段错误(segfault) "段错误"是程序试图操作不允许访问或试图访问的不允许内存的情况.可能导致段错误的原因主要有: 1.试图解引用空指针(你不允许访问内存地址0) 2.试图解 ...
- CSS 小结笔记之浮动
在css中float是一个非常好用的属性,float最基本用法是用来做文字环绕型的样式的. 基本用法:float:left | right 例如 <!DOCTYPE html> <h ...
- eclipse安装lua
单击Eclipse->Help->Install New Software… 在Work with中输入网址 Kepler - http://download.eclipse.org/re ...
- 在centos系统安装mongodb
在Linux CentOS系统上安装完php和MySQL后,为了使用方便,需要将php和mysql命令加到系统命令中,如果在没有添加到环境变量之前,执行“php -v”命令查看当前php版本信息时时, ...
- RHEL7系统管理之内核管理
1. Kdump工具 Kdump的工作机制是在内核崩溃时, 通过kexec 工具由BIOS启动一个备用内核, 由备用内核执行一系列任务,保存内存中崩溃内核的状态, 供后续故障分析用. 本文默认AMD或 ...