BZOJ2194: 快速傅立叶之二(NTT,卷积)
Time Limit: 10 Sec Memory Limit: 259 MB
Submit: 1776 Solved: 1055
[Submit][Status][Discuss]
Description
请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5。 a,b中的元素均为小于等于100的非负整数。
Input
Output
输出N行,每行一个整数,第i行输出C[i-1]。
Sample Input
3 1
2 4
1 1
2 4
1 4
Sample Output
12
10
6
1
HINT
Source
题目中给的公式不好搞
我们按照套路,将$B$翻转一下
$$C(k) = \sum_0^n a_i * b_{n - 1 - i + k}$$
此时后面的式子就只与$k$有关了
设$$D(n - 1 + k) = \sum_0^n a_i * b_{n - 1 - i + k}$$
直接NTT
#include<cstdio>
#define swap(x,y) x ^= y, y ^= x, x ^= y
#define LL long long
using namespace std;
const int MAXN = * 1e5 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '',c = getchar();
return x * f;
}
const int P = , g = , gi = ;
int N;
int
LL a[MAXN], b[MAXN], r[MAXN];
LL fastpow(LL a, int p, int mod) {
LL base = ;
while(p) {
if(p & ) base = (base * a) % mod;
a = (a * a) % mod; p >>= ;
}
return base % mod;
}
LL NTT(LL *A, int type, int N, int mod) {
for(int i = ; i < N; i++)
if(i < r[i]) swap(A[i], A[r[i]]);
for(int mid = ; mid < N; mid <<= ) {
LL W = fastpow( (type == ) ? g : gi, (P - ) / (mid << ), mod );
for(int j = ; j < N; j += (mid << )) {
int w = ;
for(int k = ; k < mid; k++, w = (w * W) % P) {
LL x = A[j + k] % P, y = w * A[j + k + mid] % P;
A[j + k] = (x + y) % P;
A[j + k + mid] = (x - y + P) % P;
}
}
}
if(type == -) {
LL inv = fastpow(N, mod - , mod);
for(int i = ; i < N; i++)
A[i] = (A[i] * inv) % mod;
}
}
int main() {
#ifdef WIN32
freopen("a.in","r",stdin);
#endif
N = read();
for(int i = ; i < N; i++)
a[i] = read(), b[N - i] = read();
int limit = , L = ;
while(limit <= N + N) limit <<=, L++;
for(int i = ; i < limit; i++) r[i] = (r[i >> ] >> ) | ((i & ) << (L - ));
NTT(a, , limit, P); NTT(b, , limit, P);
for(int i = ; i < limit; i++) a[i] = (a[i] * b[i]) % P;
NTT(a, -, limit, P);
for(int i = ; i < N * ; i++)
printf("%d\n",a[i] % P);
return ;
}
BZOJ2194: 快速傅立叶之二(NTT,卷积)的更多相关文章
- bzoj2194 快速傅立叶之二 ntt
bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...
- BZOJ2194: 快速傅立叶之二 FFT_卷积
Code: #include <cstdio> #include <algorithm> #include <cmath> #include <cstring ...
- [bzoj2194]快速傅立叶之二_FFT
快速傅立叶之二 bzoj-2194 题目大意:给定两个长度为$n$的序列$a$和$b$.求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i} ...
- bzoj2194: 快速傅立叶之二
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- bzoj千题计划256:bzoj2194: 快速傅立叶之二
http://www.lydsy.com/JudgeOnline/problem.php?id=2194 相乘两项的下标 的 差相同 那么把某一个反过来就是卷积形式 fft优化 #include< ...
- BZOJ.2194.快速傅立叶之二(FFT 卷积)
题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...
- BZOJ2194:快速傅立叶之二(FFT)
Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...
- BZOJ2194 快速傅立叶之二 【fft】
题目 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非负整数. 输入格式 ...
- 2018.11.18 bzoj2194: 快速傅立叶之二(fft)
传送门 模板题. 将bbb序列反过来然后上fftfftfft搞定. 代码: #include<bits/stdc++.h> #define ri register int using na ...
随机推荐
- Android 对话框 (AlertDialog)
Android 提供了 AlertDialog 类可通过其内部类 Builder 轻松创建对话框窗口,但是没法对这个对话框窗口进行定制,为了修改 AlertDialog 窗口显示的外观,解决的办法就是 ...
- ciscn2018-pwn-wp
前言 2018全国大学生网络安全竞赛 ,做了2 道题 task_supermarket change_desc 里面调用 realloc 会触发 uaf 利用 uaf 修改 obj->desc_ ...
- 网络 互联网接入方法、Mbit与MB的转换
ADSL:非对称数字用户环路(绝大多数家庭接入方法,使用电话线).可以提供最高1Mbps的上行速率和最高8Mbps的下行速率.最新的ADSL2+可以提供最高24Mbps的下行速率. 千千兆TB 千兆G ...
- java 中解析json步骤
一. JSON (JavaScript Object Notation)一种简单的数据格式,比xml更轻巧. Json建构于两种结构: 1.“名称/值”对的集合(A collection ...
- leetCode题解之First Missing Positive
1.问题描述 2.题解思路 本题的思路是对于数组中每个正的元素,应该将其放到数组中对应的位置,比如元素1 ,应该放在数组的第一个位置.以此类推,最后检查数组中元素值和下标不匹配的情况. 3.代码 in ...
- 初探diskstats
内核很多重要子系统均通过proc文件的方式,将自身的一些统计信息输出,方便最终用户查看各子系统的运行状态,这些统计信息被称为metrics. 直接查看metrics并不能获取到有用的信息,一般都是由特 ...
- teradata 字符串数据合并 在concat()函数无法使用的情况下
在teradata sql中不存在concat()函数或者stuff()函数,在此情况下,如何实现多条字符串数据合并成一行? 在查找不同方法过程中,在stackflow中找到最简便的方法,使用xml_ ...
- 用CHTCollectionViewWaterfallLayout写瀑布流
用CHTCollectionViewWaterfallLayout写瀑布流 实现的瀑布流效果图: 源码: WaterfallCell.h 与 WaterfallCell.m // // Waterfa ...
- wxpython 窗口排版- proportion/flag/border参数说明
新学习wxpython,一直纠结于窗口控件的排版,经过几天的查资料.试验,总结如下. 1.需求实例 来个实例,窗口有3行控件 第一行是文本提示(大小不变,文字左对齐,控件居左). 第二行依次为文本提示 ...
- C# Socket编程 笔记,Socket 详解,入门简单
目录 一,网络基础 二,Socket 对象 三,Bind() 绑定与 Connect() 连接 四,Listen() 监听请求连接 和 Accept() 接收连接请求 五,Receive() 与 Se ...