题解

考虑一个点双(因为是简单环),如果没有环(两点一线),那么乘上K
如果有一个环,那么用polya定理,每个置换圈有gcd(i,n)个循环节
如果有两个及以上的环,任何一种置换都合法,那么只和每个颜色用了多少个有关,用插板法算组合数就是\(\binom{n + k - 1}{k - 1}\)

代码

#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
//#define ivorysi
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define mo 974711
#define RG register
#define MAXN 200005
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;char c = getchar();T f = 1;
    while(c < '0' || c > '9') {
    if(c == '-') f = -1;
    c = getchar();
    }
    while(c >= '0' && c <= '9') {
    res = res * 10 + c - '0';
    c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {putchar('-');x = -x;}
    if(x >= 10) {
    out(x / 10);
    }
    putchar('0' + x % 10);
}
const int MOD = 1000000007;
int N,M,K;
struct node {
    int to,next;
}E[1005];
int head[55],sumE,fac[205],invfac[205],dfn[55],low[55],idx,sta[105],top,col[55],cnt,ans;
vector<int> ver;
int mul(int a,int b) {return 1LL * a * b % MOD;}
int inc(int a,int b) {a = a + b;if(a >= MOD) a -= MOD;return a;}
int fpow(int x,int c) {
    int res = 1,t = x;
    while(c) {
    if(c & 1) res = mul(res,t);
    t = mul(t,t);
    c >>= 1;
    }
    return res;
}
int gcd(int a,int b) {
    return b == 0 ? a : gcd(b,a % b);
}
void add(int u,int v) {
    E[++sumE].to = v;
    E[sumE].next = head[u];
    head[u] = sumE;
}
int C(int n,int m) {
    if(n < m) return 0;
    return mul(mul(fac[n],invfac[m]),invfac[n - m]);
}
void Tarjan(int u,int fa) {
    dfn[u] = low[u] = ++idx;
    sta[++top] = u;
    for(int i = head[u] ; i ; i = E[i].next) {
    int v = E[i].to;
    if(v != fa) {
        if(dfn[v]) low[u] = min(low[u],dfn[v]);
        else {
        Tarjan(v,u);
        if(low[v] >= dfn[u]) {
            ver.clear();
            ++cnt;
            col[u] = cnt;
            ver.pb(u);
            while(1) {
            int x = sta[top--];
            col[x] = cnt;
            ver.pb(x);
            if(x == v) break;
            }
            int tot = 0;
            for(auto k : ver) {
            for(int j = head[k] ; j ; j = E[j].next) {
                if(col[E[j].to] == cnt) ++tot;
            }
            }
            tot /= 2;
            if(tot == 1) ans = mul(ans,K);
            else if(tot == ver.size()) {
            int t = 0;
            for(int j = 1 ; j <= tot ; ++j) {
                t = inc(t,fpow(K,gcd(tot,j)));
            }
            t = mul(t,fpow(tot,MOD - 2));
            ans = mul(ans,t);
            }
            else ans = mul(ans,C(tot + K - 1,K - 1));
        }
        else low[u] = min(low[v],low[u]);
        }
    }
    }
}
void Solve() {
    read(N);read(M);read(K);
    int u,v;
    for(int i = 1 ;i <= M ; ++i) {
    read(u);read(v);add(u,v);add(v,u);
    }
    fac[0] = 1;
    for(int i = 1 ; i <= 200; ++i) fac[i] = mul(fac[i - 1],i);
    invfac[200] = fpow(fac[200],MOD - 2);
    for(int i = 199 ; i >= 0 ; --i) invfac[i] = mul(invfac[i + 1],i + 1);
    ans = 1;
    for(int i = 1 ; i <= N ; ++i) {
    if(!dfn[i]) Tarjan(i,0);
    }
    out(ans);enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
    return 0;
}

【AtCoder】ARC062F - AtCoDeerくんとグラフ色塗り / Painting Graphs with AtCoDeer的更多相关文章

  1. ARC062F AtCoDeerくんとグラフ色塗り / Painting Graphs with AtCoDeer Burnside 引理

    题目传送门 https://atcoder.jp/contests/arc062/tasks/arc062_d 题解 首先对整张图做 Tarjan 点双. 对于一个点双,如果是由一条边构成的,那么很显 ...

  2. [Arc062] Painting Graphs with AtCoDeer

    [Arc062] Painting Graphs with AtCoDeer Description 给定一张N点M边的无向图,每条边要染一个编号在1到K的颜色.你可以对一张染色了的图进行若干次操作, ...

  3. ARC 062 F - Painting Graphs with AtCoDeer 割点 割边 不动点 burnside引理

    LINK:Painting Graphs with AtCoDeer 看英文题面果然有点吃不消 一些细节会被忽略掉. 问每条边都要被染色 且一个环上边的颜色可以旋转. 用c种颜色有多少本质不同的方法. ...

  4. 2018.09.20 atcoder Painting Graphs with AtCoDeer(tarjan+polya)

    传送门 一道思维题. 如果没有环那么对答案有k的贡献. 如果恰为一个环,可以用polya求贡献. 如果是一个有多个环重叠的双联通的话,直接转化为组合数问题(可以证明只要每种颜色被选取的次数相同一定可以 ...

  5. [ARC062F]Painting Graphs with AtCoDeer

    题意:一个无向图,用$k$种不同的颜色给每条边染色,问能染出多少种不同的图,如果两张图能通过循环移位环边使得颜色相同,那么这两张图被认为是相同的 数学太差伤不起啊...补了一下Burnside定理的证 ...

  6. 【ARC062F】 Painting Graphs with AtCoDeer 点双连通分量+polya定理

    Description 给定一张N点M边的无向图,每条边要染一个编号在1到K的颜色. 你可以对一张染色了的图进行若干次操作,每次操作形如,在图中选择一个简单环(即不经过相同点的环),并且将其颜色逆时针 ...

  7. [atARC062F]Painting Graphs with AtCoDeer

    求出点双后缩点,对于点双之间,显然不存在简单环,即每一个简单环一定在一个点双内部,换言之即每一个点双可以独立的考虑,然后将结果相乘 (对于点双之间的边任意染色,即若有$s$条边,还会有$k^{s}$的 ...

  8. AtcoderARC062F Painting Graphs with AtCoDeer 【双连通分量】【polya原理】

    题目分析: 如果一个双连通分量是简单环,那么用polya原理计数循环移位即可. 如果一个双连通分量不是简单环,那么它必然可以两两互换,不信你可以证明一下相邻的可以互换. 如果一条边是桥,那么直接乘以k ...

  9. ARC062 - F. Painting Graphs with AtCoDeer (Polya+点双联通分量)

    似乎好久都没写博客了....赶快来补一篇 题意 给你一个 \(n\) 个点 , 没有重边和自环的图 . 有 \(m\) 条边 , 每条边可以染 \(1 \to k\) 中的一种颜色 . 对于任意一个简 ...

随机推荐

  1. Oracle的基本语法,存储函数及触发器

    1.PL/SQL    PL/SQL是Oracle对 ql语言的过程化扩展,指在 SQL 命令语言中增加了过程处理语句,使SQL语言具有过程处理能力.把 SQL 语言的数据操纵能  力与过程语言的数据 ...

  2. bzoj千题计划159:bzoj2055: 80人环游世界(有源汇上下界可行最小费用流)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2055 某个国家必须经过vi次, 可以转化为上下界都为vi的边 对这张图做有源汇上下界可行最小费用流 ...

  3. http请求头和响应头详细解释

    想对http请求头和响应头有更细致的了解,请看如下 Requests部分 Header 解释 示例 Accept 指定客户端能够接收的内容类型 Accept: text/plain, text/htm ...

  4. Java并发编程原理与实战五:创建线程的多种方式

    一.继承Thread类 public class Demo1 extends Thread { public Demo1(String name) { super(name); } @Override ...

  5. Angular5基本入门

    基本环境安装 首先,确定安装了nodejs与npm,angular 5要求node版本在6.9.x以上.npm版本在 3.x.x以上: 1.安装@angular/cli npm install -g ...

  6. Swift动态添加UIImageView并添加事件

    Swift动态添加UIImageView并添加事件: 1. 创建UIImageView实例,并进行初始化 2. 设置UIImageView的用户交互属性userInteractionEnabled为T ...

  7. shell逐行读取excel并执行sql

    背景:测试同学想根据一组user_id 获取token做测试,由于各种原因(数据量大,sql语句复杂),只能根据user_id一条条查,于是写了个脚本: 1, 先查询需要的user_id 导出到use ...

  8. JS踩过的坑

    一:DOM对象的查找 DOM的查找到的对象,除byID的之外,返回的都是一个数组,并不是DOM对象无法调用DOM对象的方法. 通过id查找: 因为id在一个HTML文件中唯一,因此查找到的只会是一个元 ...

  9. c++语言知识点汇总

    c++ primer version-5 的整理 section 1: 内置类型和自定义类型: main函数的返回值:指示状态.0:成功:1:系统定义. unix和win系统中,执行完程序可以使用ec ...

  10. 01 Go 1.1 Release Notes

    Go 1.1 Release Notes Introduction to Go 1.1 Changes to the language Integer division by zero Surroga ...