Counting
Description
数学老师走啦,英语老师来上课啦
他的性格与众不同,又因为大家都是理科班的学生
他希望大家在数字母的过程中领悟英语的快乐
他用m种字母进行排列组合,
得到了所有不同的,长度为n的字符串
(不需要所有字母都出现在字符串中)
对于每个字符串s
定义C(s)为s中出现次数最多的字母的出现次数
那么问题来了
所有的这些字符集大小为m,长度为n的字符串中
C(s)=k的有多少个呢
Input
一行三个整数n,m,k,分别表示长度,字符集和要求的C(s)
Output
输出一行表示结果
答案对998244353取模
Sample Input
3 2 2
Sample Output
6
HINT
数据保证k≤n
对于10%的数据,1≤n,m≤8
对于30%的数据,1≤n,m≤200
对于50%的数据,1≤n,m≤1000
对于100%的数据,1≤n,m≤50000
样例解释:
假设样例中的两个字母为a,b
则满足条件的有aab,aba,abb,baa,bab,bba六个
Solution
首先把最直观的DP方程列出来。
记\(f[i][j][k]\)为当前考虑到第\(i\)个字母,已经使用了串中的\(j\)个位置,出现最多的字母次数不超过\(k\)的方案数。答案就是\(f[m][n][k]-f[m][n][k-1]\)。
转移方程显然是枚举当前字母使用多少次:
\]
然后可以发现\(k\)十分的冗余,并没有参与转移。也就是说\(k\)仅仅作用于循环范围控制上。
我们尝试把最后一维省掉:\(f[i][j]\)。\(k\)仍然发挥作用,也就是现在的\(f[i][j]\)对应着原来的\(f[i][j][k]\)。
现在看看方程:
f[i][j]&=\sum_{x=0}^k{j\choose x}f[i-1][j-x]\\
&=\sum_{x=0}^k\frac{j!}{x!(j-x)!}f[i-1][j-x]\\
\frac{f[i][j]}{j!}&=\sum_{x=0}^k\;x!\;\frac{f[i-1][j-x]}{(j-x)!}
\end{aligned}
\]
后面显然是一个卷积的形式,并且等号左边的形式和卷积右半边的形式一样。所以可以把每个\(f[i]\)看做一个多项式
\]
转移就是这个多项式和
\]
的卷积。即\(f[n]=f[0]*T^{n}(x)\)
而\(T(x)\)是独立的存在不受其他东西影响,所以将\(T(x)\)用快速幂自卷积一下,再用\(f[0]\)卷积一下就好了。根据定义,\(f[0]=1\),所以相当于直接求\(T(x)\)的\(n\)次方。答案别忘了乘上\(n\)的阶乘。
#include <cstdio>
#include <cstring>
using namespace std;
const int N=50005,MOD=998244353,G=3,B17=131100;
int fact[N],iact[N];
inline void swap(int &x,int &y){x^=y^=x^=y;}
inline int pow(int x,int y){
int res=1;
for(;y;x=1LL*x*x%MOD,y>>=1)
if(y&1) res=1LL*res*x%MOD;
return res;
}
namespace NTT{/*{{{*/
int n,invn,bit,rev[B17],W[B17][2];
void build(){
int b=pow(G,MOD-2);
for(int i=0;i<=17;i++){
W[1<<i][0]=pow(G,(MOD-1)/(1<<i));
W[1<<i][1]=pow(b,(MOD-1)/(1<<i));
}
}
void init(int _n){
for(n=1,bit=0;n<_n;n<<=1,bit++);
invn=pow(n,MOD-2);
for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
}
void clear(int *a){for(int i=0;i<n;i++)a[i]=0;}
void ntt(int *a,int f){
for(int i=0;i<n;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
int u,v,w_n,w;
for(int i=2;i<=n;i<<=1){
w_n=W[i][f==-1];
for(int j=0;j<n;j+=i){
w=1;
for(int k=0;k<i/2;k++){
u=a[j+k]; v=1LL*w*a[j+i/2+k]%MOD;
a[j+k]=(u+v)%MOD; a[j+i/2+k]=(u-v)%MOD;
w=1LL*w*w_n%MOD;
}
}
}
if(f==-1)
for(int i=0;i<n;i++) a[i]=1LL*a[i]*invn%MOD;
}
}/*}}}*/
void ksm(int *x,int y,int n,int *res){
NTT::init((n+1)*2);
NTT::clear(res);
res[0]=1;
for(;y;y>>=1){
NTT::ntt(x,1);
if(y&1){
NTT::ntt(res,1);
for(int i=0;i<NTT::n;i++) res[i]=1LL*res[i]*x[i]%MOD;
NTT::ntt(res,-1);
for(int i=n+1;i<NTT::n;i++) res[i]=0;
}
for(int i=0;i<NTT::n;i++) x[i]=1LL*x[i]*x[i]%MOD;
NTT::ntt(x,-1);
for(int i=n+1;i<NTT::n;i++) x[i]=0;
}
}
int solve(int n,int m,int k){
static int a[B17],b[B17];
memset(a,0,sizeof a);
for(int i=0;i<=k;i++) a[i]=iact[i];
ksm(a,m,n,b);
return 1LL*fact[n]*b[n]%MOD;
}
int main(){
freopen("input.in","r",stdin);
NTT::build();
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
fact[0]=1;
for(int i=1;i<=n;i++) fact[i]=1LL*fact[i-1]*i%MOD;
iact[n]=pow(fact[n],MOD-2);
for(int i=n-1;i>=0;i--) iact[i]=1LL*iact[i+1]*(i+1)%MOD;
int ans=(solve(n,m,k)-solve(n,m,k-1))%MOD;
printf("%d\n",ans<0?ans+MOD:ans);
return 0;
}
Counting的更多相关文章
- 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))
在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...
- POJ_2386 Lake Counting (dfs 错了一个负号找了一上午)
来之不易的2017第一发ac http://poj.org/problem?id=2386 Lake Counting Time Limit: 1000MS Memory Limit: 65536 ...
- ZOJ3944 People Counting ZOJ3939 The Lucky Week (模拟)
ZOJ3944 People Counting ZOJ3939 The Lucky Week 1.PeopleConting 题意:照片上有很多个人,用矩阵里的字符表示.一个人如下: .O. /|\ ...
- find out the neighbouring max D_value by counting sort in stack
#include <stdio.h> #include <malloc.h> #define MAX_STACK 10 ; // define the node of stac ...
- 1004. Counting Leaves (30)
1004. Counting Leaves (30) A family hierarchy is usually presented by a pedigree tree. Your job is ...
- 6.Counting Point Mutations
Problem Figure 2. The Hamming distance between these two strings is 7. Mismatched symbols are colore ...
- 1.Counting DNA Nucleotides
Problem A string is simply an ordered collection of symbols selected from some alphabet and formed i ...
- uva 11401 Triangle Counting
// uva 11401 Triangle Counting // // 题目大意: // // 求n范围内,任意选三个不同的数,能组成三角形的个数 // // 解题方法: // // 我们设三角巷的 ...
- JSONKit does not support Objective-C Automatic Reference Counting(ARC) / ARC forbids Objective-C objects in struct
当我们在使用JSONKit处理数据时,直接将文件拉进项目往往会报这两个错“JSONKit does not support Objective-C Automatic Reference Coun ...
- iOS开发 JSonKit does not support Objective-C Automatic Reference Counting(ARC)
有使用JSonKit的朋友,如果遇到“JSonKit does not support Objective-C Automatic Reference Counting(ARC)”这种情况,可参照如下 ...
随机推荐
- RabbitMQ入门:远程过程调用(RPC)
假如我们想要调用远程的一个方法或函数并等待执行结果,也就是我们通常说的远程过程调用(Remote Procedure Call).怎么办? 今天我们就用RabbitMQ来实现一个简单的RPC系统:客户 ...
- Java字符串连接操作的性能问题
首先,看一段实验程序: package com.test; class StringTest { public static void main(String[] args) { long start ...
- 单纯形法MATALAB实现
参考单纯形法的步骤,MATALAB中的实现如下(求极小值): 注:对于极大值的求解,只需要对目标函数添加负号,求解出来的\(X\),再带入原目标函数即可. function [ X, z ] = si ...
- 【python 3.6】类:访问属性及调用方法
>>> class price(): //定义1个类,用于计算价格 def __init__(self,name,danjia): //初始化方法,定义商品名称和单价 self.na ...
- deep learning loss总结
在深度学习中会遇到各种各样的任务,我们期望通过优化最终的loss使网络模型达到期望的效果,因此loss的选择是十分重要的. cross entropy loss cross entropy loss和 ...
- PASSWORD MySQL 5.6.21-1ubuntu14.04_amd64
/***************************************************************************** The main idea is that ...
- 深入理解Java类加载器(ClassLoader) (转)
转自: http://blog.csdn.net/javazejian/article/details/73413292 关联文章: 深入理解Java类型信息(Class对象)与反射机制 深入理解Ja ...
- C# Linq找不到行或已更改
前段时间工作中的一个新需求,有机会用到了Linq to SQL.使用后的第一感觉,就是方便很多,也为整个项目节约了一大把的开发时间,甚至代码量也少了很多.不过在程序的实际运行中,始终会遇到一些莫名其妙 ...
- 项目Beta冲刺(团队)第四天
1.昨天的困难 返回提问者昵称的时候返回信息不全,个别信息没有返回过去 一开始ProgressBar控件的显示有问题 需要实现类似聊天的功能,采用listview承载聊天内容,对于自定义适配器的构建使 ...
- 【贪心算法】POJ-1862 简单哈夫曼
一.题目 Description Our chemical biologists have invented a new very useful form of life called stripie ...