这几天看了看LBP及其人脸识别的流程,并在网络上搜相应的python代码,有,但代码质量不好,于是自己就重新写了下,对于att_faces数据集的识别率能达到95.0%~99.0%(40种类型,每种随机选5张训练,5张识别),全部代码如下,不到80行哦。

#coding:utf-8
import numpy as np
import cv2, os, math, os.path, glob, random g_mapping=[
0, 1, 2, 3, 4, 58, 5, 6, 7, 58, 58, 58, 8, 58, 9, 10,
11, 58, 58, 58, 58, 58, 58, 58, 12, 58, 58, 58, 13, 58, 14, 15,
16, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58,
17, 58, 58, 58, 58, 58, 58, 58, 18, 58, 58, 58, 19, 58, 20, 21,
22, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58,
58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58,
23, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58,
24, 58, 58, 58, 58, 58, 58, 58, 25, 58, 58, 58, 26, 58, 27, 28,
29, 30, 58, 31, 58, 58, 58, 32, 58, 58, 58, 58, 58, 58, 58, 33,
58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 34,
58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58,
58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 35,
36, 37, 58, 38, 58, 58, 58, 39, 58, 58, 58, 58, 58, 58, 58, 40,
58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 41,
42, 43, 58, 44, 58, 58, 58, 45, 58, 58, 58, 58, 58, 58, 58, 46,
47, 48, 58, 49, 58, 58, 58, 50, 51, 52, 58, 53, 54, 55, 56, 57] def loadImageSet(folder, sampleCount=5):
trainData = []; testData = []; yTrain=[]; yTest = [];
for k in range(1,41):
folder2 = os.path.join(folder, 's%d' %k)
data = [cv2.imread(d.encode('gbk'),0) for d in glob.glob(os.path.join(folder2, '*.pgm'))]
sample = random.sample(range(10), sampleCount)
trainData.extend([data[i] for i in range(10) if i in sample])
testData.extend([data[i] for i in range(10) if i not in sample])
yTest.extend([k]* (10-sampleCount))
yTrain.extend([k]* sampleCount)
return trainData, testData, np.array(yTrain), np.array(yTest) def LBP(I, radius=2, count=8): #得到图像的LBP特征
dh = np.round([radius*math.sin(i*2*math.pi/count) for i in range(count)])
dw = np.round([radius*math.cos(i*2*math.pi/count) for i in range(count)]) height ,width = I.shape
lbp = np.zeros(I.shape, dtype = np.int)
I1 = np.pad(I, radius, 'edge')
for k in range(count):
h,w = radius+dh[k], radius+dw[k]
lbp += ((I>I1[h:h+height, w:w+width])<<k)
return lbp def calLbpHistogram(lbp, hCount=7, wCount=5, maxLbpValue=255): #分块计算lbp直方图
height,width = lbp.shape
res = np.zeros((hCount*wCount, max(g_mapping)+1), dtype=np.float)
assert(maxLbpValue+1 == len(g_mapping)) for h in range(hCount):
for w in range(wCount):
blk = lbp[height*h/hCount:height*(h+1)/hCount, width*w/wCount:width*(w+1)/wCount]
hist1 = np.bincount(blk.ravel(), minlength=maxLbpValue) hist = res[h*wCount+w,:]
for v,k in zip(hist1, g_mapping):
hist[k] += v
hist /= hist.sum()
return res def main(folder=u'E:/迅雷下载/faceProcess/att_faces'):
trainImg, testImg, yTrain, yTest = loadImageSet(folder) xTrain = np.array([calLbpHistogram(LBP(d)).ravel() for d in trainImg])
xTest = np.array([calLbpHistogram(LBP(d)).ravel() for d in testImg]) lsvc = cv2.SVM() #支持向量机方法
svm_params = dict( kernel_type = cv2.SVM_LINEAR, svm_type = cv2.SVM_C_SVC, C=2.67, gamma=5.383 )
lsvc.train(np.float32(xTrain), np.float32(yTrain), params = svm_params)
lsvc_y_predict = np.array( [lsvc.predict(d) for d in np.float32(xTest)])
print u'支持向量机识别率', (lsvc_y_predict == np.array(yTest)).mean() if __name__ == '__main__':
main()

  下面是对mnist手写数字数据集的识别,修改了数据集的载入,并加了图像的倾斜校正,识别率达到96%(如果使用sklearn的svm,效率会更高一些。)

import cPickle
import gzip,math
import numpy as np
import os, glob, random, cv2 SZ = 28
def deskew(img):
m = cv2.moments(img)
if abs(m['mu02']) < 1e-2:
return img.copy()
skew = m['mu11']/m['mu02']
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
img = cv2.warpAffine(img,M,(SZ, SZ),flags=cv2.WARP_INVERSE_MAP|cv2.INTER_LINEAR)
return img g_mapping=[
0, 1, 2, 3, 4, 58, 5, 6, 7, 58, 58, 58, 8, 58, 9, 10,
11, 58, 58, 58, 58, 58, 58, 58, 12, 58, 58, 58, 13, 58, 14, 15,
16, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58,
17, 58, 58, 58, 58, 58, 58, 58, 18, 58, 58, 58, 19, 58, 20, 21,
22, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58,
58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58,
23, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58,
24, 58, 58, 58, 58, 58, 58, 58, 25, 58, 58, 58, 26, 58, 27, 28,
29, 30, 58, 31, 58, 58, 58, 32, 58, 58, 58, 58, 58, 58, 58, 33,
58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 34,
58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58,
58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 35,
36, 37, 58, 38, 58, 58, 58, 39, 58, 58, 58, 58, 58, 58, 58, 40,
58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 41,
42, 43, 58, 44, 58, 58, 58, 45, 58, 58, 58, 58, 58, 58, 58, 46,
47, 48, 58, 49, 58, 58, 58, 50, 51, 52, 58, 53, 54, 55, 56, 57] def loadImageSet():
with gzip.open('./mnist.pkl.gz') as fp:
train_set, valid_set, test_set = cPickle.load(fp) xTrain = train_set[0]; s1 = xTrain.shape; xTrain = xTrain.reshape((s1[0],28,28))
xTest = test_set[0]; s2 = xTest.shape; xTest = xTest.reshape((s2[0],28,28))
xTrain = np.array([deskew(d) for d in xTrain])
xTest = np.array([deskew(d) for d in xTest])
return xTrain, xTest, train_set[1], test_set[1] def LBP(I, radius=2, count=8): #得到图像的LBP特征
dh = np.round([radius*math.sin(i*2*math.pi/count) for i in range(count)])
dw = np.round([radius*math.cos(i*2*math.pi/count) for i in range(count)]) height ,width = I.shape
lbp = np.zeros(I.shape, dtype = np.int)
I1 = np.pad(I, radius, 'edge')
for k in range(count):
h,w = radius+dh[k], radius+dw[k]
lbp += ((I>I1[h:h+height, w:w+width])<<k)
return lbp def calLbpHistogram(lbp, hCount=2, wCount=2, maxLbpValue=255): #分块计算lbp直方图
height,width = lbp.shape
res = np.zeros((hCount*wCount, max(g_mapping)+1), dtype=np.float)
assert(maxLbpValue+1 == len(g_mapping)) for h in range(hCount):
for w in range(wCount):
blk = lbp[height*h/hCount:height*(h+1)/hCount, width*w/wCount:width*(w+1)/wCount]
hist1 = np.bincount(blk.ravel(), minlength=maxLbpValue) hist = res[h*wCount+w,:]
for v,k in zip(hist1, g_mapping):
hist[k] += v
hist /= hist.sum()
return res def main():
trainImg, testImg, yTrain, yTest = loadImageSet() xTrain = np.array([calLbpHistogram(LBP(d)).ravel() for d in trainImg])
xTest = np.array([calLbpHistogram(LBP(d)).ravel() for d in testImg]) lsvc = cv2.SVM() #支持向量机方法
svm_params = dict( kernel_type = cv2.SVM_LINEAR, svm_type = cv2.SVM_C_SVC, C=2.67, gamma=5.383 )
lsvc.train(np.float32(xTrain), np.float32(yTrain), params = svm_params)
lsvc_y_predict = np.array( [lsvc.predict(d) for d in np.float32(xTest)])
print u'支持向量机', (lsvc_y_predict == np.array(yTest)).mean() if __name__ == '__main__':
main()

  

LBP人脸识别的python实现的更多相关文章

  1. gabor变换人脸识别的python实现,att_faces数据集平均识别率99%

    大家都说gabor做人脸识别是传统方法中效果最好的,这几天就折腾实现了下,网上的python实现实在太少,github上的某个版本还误导了我好几天,后来采用将C++代码封装成dll供python调用的 ...

  2. PCA人脸识别的python实现

    这几天看了看PCA及其人脸识别的流程,并在网络上搜相应的python代码,有,但代码质量不好,于是自己就重新写了下,对于att_faces数据集的识别率能达到92.5%~98.0%(40种类型,每种随 ...

  3. iOS活体人脸识别的Demo和一些思路

    代码地址如下:http://www.demodashi.com/demo/12011.html 之前公司项目需要,研究了一下人脸识别和活体识别,并运用免费的讯飞人脸识别,在其基础上做了二次开发,添加了 ...

  4. 人脸检测? 对Python来说太简单, 调用dlib包就可以完成

    "Dlib 是一个现代化的 C ++ 工具包,包含用于创建复杂软件的机器学习算法和工具 " .它使您能够直接在 Python 中运行许多任务,其中一个例子就是人脸检测. 安装 dl ...

  5. 百度Aip人脸识别之python代码

    用python来做人脸识别代码量少 思路清晰, 在使用之前我们需要在我们的配置的编译器中通过pip install baidu-aip  即可 from aip import AipFace 就可以开 ...

  6. 人脸识别之Python DLib库进行人脸关键点识别

    一.首先安装DLib模块 这里只介绍linux安装的过程,windows安装过程请自行百度 1.首先,安装dlib.skimage前:先安装libboost sudo apt-get install ...

  7. 转《在浏览器中使用tensorflow.js进行人脸识别的JavaScript API》

    作者 | Vincent Mühle 编译 | 姗姗 出品 | 人工智能头条(公众号ID:AI_Thinker) [导读]随着深度学习方法的应用,浏览器调用人脸识别技术已经得到了更广泛的应用与提升.在 ...

  8. face_recognition 人脸识别报错

    [root@localhost examples]# python facerec_from_video_file.py RuntimeError: module compiled against A ...

  9. face-api.js:一个在浏览器中进行人脸识别的 JavaScript 接口

    Mark! 本文将为大家介绍一个建立在「tensorflow.js」内核上的 javascript API——「face-api.js」,它实现了三种卷积神经网络架构,用于完成人脸检测.识别和特征点检 ...

随机推荐

  1. 如何添加设备UDID到开发者中心

    如何添加设备UDID到开发者中心 1. 登录开发者中心 2. 选择证书那一项 3. 选择Devices 4. 点选+按钮 5. 填上设备的UUID以及设备名字然后添加上 大功告成:) 附录: 如何获取 ...

  2. Python学习---Django关于POST的请求解析源码分析

    当有请求到来之后,先判断请求头content_type是不是[application/x-www-form-urlencoded] --> 如果是则将请求数据赋值给request.body然后解 ...

  3. PHP 实现单点登录

    1.准备两个虚拟域名 127.0.0.1  www.openpoor.com 127.0.0.1  www.myspace.com 2.在openpoor的根目录下创建以下文件 index.PHP [ ...

  4. (1)StringBuilder类和StringBuffer类 (2)日期相关的类 (3)集合框架 (4)List集合

    1.StringBuilder类和StringBuffer类(查手册会用即可)1.1 基本概念 由于String类描述的字符串内容无法更改,若程序中出现大量类似的字符串时需要申请独立的内存空间单独保存 ...

  5. scala数据库工具类

    scala的数据库连接池,基于mysql import java.util.concurrent.ConcurrentHashMap import com.jolbox.bonecp.{ BoneCP ...

  6. python3: 字符串和文本(2)

    6. 字符串忽略大小写的搜索替换 >>> text = 'UPPER PYTHON, lower python, Mixed Python' >>> re.find ...

  7. POI导出excel,本地测试没问题,linux测试无法导出

    java.lang.RuntimeException: java.io.IOException: No such file or directory        at org.apache.poi. ...

  8. JQuery Mobile+JS实现智能浮动定位导航条

    实现原理 主要用到几个知识点: 什么是scrollTop? CSS position定位 判断是否为IE6浏览器 元素相对于窗口的距离 原理:1,浏览器向下滚动时,当document的scrollTo ...

  9. mysql大数据量使用limit分页,随着页码的增大,查询效率越低下

    1.   直接用limit start, count分页语句, 也是我程序中用的方法: select * from product limit start, count当起始页较小时,查询没有性能问题 ...

  10. 20165318 2017-2018-2 《Java程序设计》第一周学习总结

    20165318 2017-2018-2 <Java程序设计>第一周学习总结 教材内容学习总结 第一章主要对Java平台进行了简单的介绍,并讲解了如何搭建Java环境. Java平台概论 ...