hdu2767之强联通缩点
Proving Equivalences
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2768 Accepted Submission(s): 1038
Let A be an n × n matrix. Prove that the following statements are equivalent:
1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.
The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the
four statements are equivalent.
Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a
lot more work than just proving four implications!
I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove?
Can you help me determine this?
* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
2
4 0
3 2
1 2
1 3
4
2
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=20000+10;
int n,m,size,top,index,ind,oud;
int head[MAX],dfn[MAX],low[MAX],stack[MAX];
int mark[MAX],flag[MAX];
//dfn表示点u出现的时间,low表示点u能到达所属环中最早出现的点(记录的是到达的时间) struct Edge{
int v,next;
Edge(){}
Edge(int V,int NEXT):v(V),next(NEXT){}
}edge[50000+10]; void Init(int num){
for(int i=0;i<=num;++i)head[i]=-1;
size=top=index=ind=oud=0;
} void InsertEdge(int u,int v){
edge[size]=Edge(v,head[u]);
head[u]=size++;
} void tarjan(int u){
if(mark[u])return;
dfn[u]=low[u]=++index;
stack[++top]=u;
mark[u]=1;
for(int i=head[u];i != -1;i=edge[i].next){
int v=edge[i].v;
tarjan(v);
if(mark[v] == 1)low[u]=min(low[u],low[v]);//必须点v在栈里面才行
}
if(dfn[u] == low[u]){
++ind,++oud;//计算缩点后点的个数,方便计算入度和出度
while(stack[top] != u){
mark[stack[top]]=-1;
low[stack[top--]]=low[u];
}
mark[u]=-1;
--top;
}
} int main(){
int t,u,v;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
Init(n);
for(int i=0;i<m;++i){
scanf("%d%d",&u,&v);
InsertEdge(u,v);
}
memset(mark,0,sizeof mark);
for(int i=1;i<=n;++i){
if(mark[i])continue;
tarjan(i);//tarjan用来缩点
}
if(ind == 1){cout<<0<<endl;continue;}
for(int i=0;i<=n;++i)mark[i]=flag[i]=0;
for(int i=1;i<=n;++i){
for(int j=head[i];j != -1;j=edge[j].next){
v=edge[j].v;
if(low[i] == low[v])continue;
if(mark[low[i]] == 0)--oud;//mark标记点u是否有出度
if(flag[low[v]] == 0)--ind;//flag标记点u是否有入度
mark[low[i]]=1,flag[low[v]]=1;
}
}
printf("%d\n",max(oud,ind));
}
return 0;
}
hdu2767之强联通缩点的更多相关文章
- poj 3694双联通缩点+LCA
题意:给你一个无向连通图,每次加一条边后,问图中桥的数目. 思路:先将图进行双联通缩点,则缩点后图的边就是桥,然后dfs记录节点深度,给出(u,v)使其节点深度先降到同一等级,然后同时降等级直到汇合到 ...
- hdu 4612 双联通缩点+树形dp
#pragma comment(linker,"/STACK:102400000,102400000")//总是爆栈加上这个就么么哒了 #include<stdio.h> ...
- HDU 2767-Proving Equivalences(强联通+缩点)
题目地址:pid=2767">HDU 2767 题意:给一张有向图.求最少加几条边使这个图强连通. 思路:先求这张图的强连通分量.假设为1.则输出0(证明该图不须要加边已经是强连通的了 ...
- Intelligence System (hdu 3072 强联通缩点+贪心)
Intelligence System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- 边的双联通+缩点+LCA(HDU3686)
Traffic Real Time Query System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- POJ 2186 Popular Cows(强联通+缩点)
Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= ...
- Proving Equivalences (hdu 2767 强联通缩点)
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- [bzoj 1093][ZJOI2007]最大半联通子图(强联通缩点+DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1093 分析: 首先肯定是先把强联通全部缩成一个点,然后成了一个DAG 下面要知道一点: ...
- POJ 2762Going from u to v or from v to u?(强联通 + 缩点 + 拓扑排序)
[题意]: 有N个房间,M条有向边,问能否毫无顾虑的随机选两个点x, y,使从①x到达y,或者,②从y到达x,一定至少有一条成立.注意是或者,不是且. [思路]: 先考虑,x->y或者y-> ...
随机推荐
- KMP【UVA1328】 Period
Description 如果一个字符串S是由一个字符串T重复K次形成的,则称T是S的循环节.使K最大的字符串T称为S的最小循环节,此时的K称为最大循环次数. 现给一个给定长度为N的字符串S,对S的每一 ...
- JSP的内置对象(上)
1.JSP内置对象的概念:JSP的内置对象时Web容器所创建的一组对象,不使用new关键字就可以使用的内置对象 2.JSP九大内置对象内置对象:out ,request ,response ,sess ...
- Android APP打包时,出错:"XXX" is not translated in "af" (Afrikaans), "am" (Amharic), "ar" (Arabic).....
"app_name" is not translated in "af" (Afrikaans), "am" (Amharic), &quo ...
- 【SQL Server 学习系列】-- sql 随机生成中文名字
原文:[SQL Server 学习系列]-- sql 随机生成中文名字 ,) )) -- 姓氏 ,) )) -- 名字 INSERT @fName VALUES ('赵'),('钱'),('孙'),( ...
- USING CHARLES FROM AN IPHONE
USING CHARLES FROM AN IPHONE 从系统偏好->高级来查看ip地址即可 To use Charles as your HTTP proxy on your iPhone ...
- MailKit---发送邮件
一封最复杂的电子邮件的基本情况为:含有邮件正文和邮件附件,邮件正文可以同时使用HTML格式和普通文本格式表示,并且HTML格式的正文中又引用了其他的内嵌资源.对于这种最复杂的电子邮件,可以采用如图所示 ...
- Swift入门(一)——基本的语法
近期開始学习swift.把学习的过程和总结整理成一个系列.方便日后回想总结. 基本的语法 基础语法 swift中每一行结束后不须要加分号.多个语句在同一行内须要用分好隔开 //表示凝视.或者用/* - ...
- C#中out与ref区别
一.ref(参考)与out区别 1.out(只出不进) 将方法中的参数传递出去,在方法中将该参数传递出去之前需要在该方法起始赋初值:在方法外传递的该参数可以不用赋值: 简单理解就是:将一个东西抛出去之 ...
- 跟我一起透彻理解template模板模式
#include <iostream> using namespace std; //template模式. class Base { public: void DealWhat() { ...
- JWT笔记
JWT是一个无状态登录的技术.所谓无状态,是指和传统的session技术相比,服务器端不需要存储用户的信息.在JWT技术中,agent向server请求一个Token. 这个Token由三部分组成,h ...