Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2768    Accepted Submission(s): 1038

Problem Description
Consider the following exercise, found in a generic linear algebra textbook.



Let A be an n × n matrix. Prove that the following statements are equivalent:



1. A is invertible.

2. Ax = b has exactly one solution for every n × 1 matrix b.

3. Ax = b is consistent for every n × 1 matrix b.

4. Ax = 0 has only the trivial solution x = 0. 



The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the
four statements are equivalent.



Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a
lot more work than just proving four implications!



I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove?

Can you help me determine this?

 
Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:



* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.

* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
 
Output
Per testcase:



* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
 
Sample Input
2
4 0
3 2
1 2
1 3
 
Sample Output
4
2
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=20000+10;
int n,m,size,top,index,ind,oud;
int head[MAX],dfn[MAX],low[MAX],stack[MAX];
int mark[MAX],flag[MAX];
//dfn表示点u出现的时间,low表示点u能到达所属环中最早出现的点(记录的是到达的时间) struct Edge{
int v,next;
Edge(){}
Edge(int V,int NEXT):v(V),next(NEXT){}
}edge[50000+10]; void Init(int num){
for(int i=0;i<=num;++i)head[i]=-1;
size=top=index=ind=oud=0;
} void InsertEdge(int u,int v){
edge[size]=Edge(v,head[u]);
head[u]=size++;
} void tarjan(int u){
if(mark[u])return;
dfn[u]=low[u]=++index;
stack[++top]=u;
mark[u]=1;
for(int i=head[u];i != -1;i=edge[i].next){
int v=edge[i].v;
tarjan(v);
if(mark[v] == 1)low[u]=min(low[u],low[v]);//必须点v在栈里面才行
}
if(dfn[u] == low[u]){
++ind,++oud;//计算缩点后点的个数,方便计算入度和出度
while(stack[top] != u){
mark[stack[top]]=-1;
low[stack[top--]]=low[u];
}
mark[u]=-1;
--top;
}
} int main(){
int t,u,v;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
Init(n);
for(int i=0;i<m;++i){
scanf("%d%d",&u,&v);
InsertEdge(u,v);
}
memset(mark,0,sizeof mark);
for(int i=1;i<=n;++i){
if(mark[i])continue;
tarjan(i);//tarjan用来缩点
}
if(ind == 1){cout<<0<<endl;continue;}
for(int i=0;i<=n;++i)mark[i]=flag[i]=0;
for(int i=1;i<=n;++i){
for(int j=head[i];j != -1;j=edge[j].next){
v=edge[j].v;
if(low[i] == low[v])continue;
if(mark[low[i]] == 0)--oud;//mark标记点u是否有出度
if(flag[low[v]] == 0)--ind;//flag标记点u是否有入度
mark[low[i]]=1,flag[low[v]]=1;
}
}
printf("%d\n",max(oud,ind));
}
return 0;
}

hdu2767之强联通缩点的更多相关文章

  1. poj 3694双联通缩点+LCA

    题意:给你一个无向连通图,每次加一条边后,问图中桥的数目. 思路:先将图进行双联通缩点,则缩点后图的边就是桥,然后dfs记录节点深度,给出(u,v)使其节点深度先降到同一等级,然后同时降等级直到汇合到 ...

  2. hdu 4612 双联通缩点+树形dp

    #pragma comment(linker,"/STACK:102400000,102400000")//总是爆栈加上这个就么么哒了 #include<stdio.h> ...

  3. HDU 2767-Proving Equivalences(强联通+缩点)

    题目地址:pid=2767">HDU 2767 题意:给一张有向图.求最少加几条边使这个图强连通. 思路:先求这张图的强连通分量.假设为1.则输出0(证明该图不须要加边已经是强连通的了 ...

  4. Intelligence System (hdu 3072 强联通缩点+贪心)

    Intelligence System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  5. 边的双联通+缩点+LCA(HDU3686)

    Traffic Real Time Query System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  6. POJ 2186 Popular Cows(强联通+缩点)

    Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= ...

  7. Proving Equivalences (hdu 2767 强联通缩点)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  8. [bzoj 1093][ZJOI2007]最大半联通子图(强联通缩点+DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1093 分析: 首先肯定是先把强联通全部缩成一个点,然后成了一个DAG 下面要知道一点: ...

  9. POJ 2762Going from u to v or from v to u?(强联通 + 缩点 + 拓扑排序)

    [题意]: 有N个房间,M条有向边,问能否毫无顾虑的随机选两个点x, y,使从①x到达y,或者,②从y到达x,一定至少有一条成立.注意是或者,不是且. [思路]: 先考虑,x->y或者y-> ...

随机推荐

  1. Windows 8.1中WinRT的变化(一)——新增控件

    这次WinRT的变化还是不小的,就拿新增控件来说,就有如下几种: AppBar 控件 我以前写过一篇文章接受过如何在WinRT程序中快速创建Metro风格图标,现在MS已经把他们标准化了,就不用我们自 ...

  2. service mysqld start 报错:service mysqld start 报错 090517 13:34:15 [ERROR] Can't open the mysql.plugin table. Please run mysql_upgrade to create it. 090Can't open the mysql.plugin table. Please run mysql

    service mysqld start 报错 090517 13:34:15 [ERROR] Can't open the mysql.plugin table. Please run mysql_ ...

  3. 使用React开发

    阅读目录 React的组件生命周期 JSX 语法 父组件传向子组件 子组件传向父(爷)组件 getDefaultProps && getInitialState 获取真实的DOM节点 ...

  4. JAVA生成问答式验证码图片,支持加减算法

    原文:http://liuguihua0823.iteye.com/blog/1511355 import java.awt.Color; import java.awt.Font; import j ...

  5. Android使用FFMpeg实现推送视频直播流到服务器

    背景 在过去的2015年中,视频直播页的新宠无疑是户外直播.随着4G网络的普及和覆盖率的提升,主播可以在户外通过手机进行直播.而观众也愿意为这种可以足不出户而观天下事的服务买单.基于这样的背景,本文主 ...

  6. DELLR720服务器更换硬盘,启动系统报错:there are offline or missing virtual drivers with preserved cache

    linux系统启动过程中给出错误: There are offline or missing virtual drives with preserved cache. Please check the ...

  7. ElasticSearch refresh API

    在 Elasticsearch 中,写入和打开一个新段的轻量的过程叫做 refresh . 默认情况下每个分片会每秒自动刷新一次.这就是为什么我们说 Elasticsearch 是 近 实时搜索: 文 ...

  8. ElasticSearch文档

    1.什么是文档? 程序中大多的实体或对象能够被序列化为包含键值对的JSON对象,键(key)是字段(field)或属性(property)的名字,值(value)可以是字符串.数字.布尔类型.另一个对 ...

  9. Weblogic OutOfMemory exception的误解 -- thread limitation

    不是全部的OutofMemory exception都是内存问题... 前几天有个客户的site报了下面错误: [ERROR][thread ] Could not start thread Time ...

  10. #include <>与#include""区别

    <>先去系统目录中找头文件,如果没有在到当前目录下找.所以像标准的头文件 stdio.h.stdlib.h等用这个方法. 而""首先在当前目录下寻找,如果找不到,再到系 ...